【Advances in Applied Energy】工业脱碳的高技术和时间分辨率综合能源系统建模

学术   科学   2024-11-27 18:31   美国  

原文信息:

High technical and temporal resolution integrated energy system modelling of industrial decarbonisation

原文链接:

https://www.sciencedirect.com/science/article/pii/S2666792422000233

Highlights

• We provide a state-of-the-art industrial representation of activities and processes in integrated energy system analysis optimisation (IESA-Opt), an integrated energy system model of the Netherlands.

• The results of this study demonstrate that it is feasible for an energy system to have a fully bio-based, hydrogen-based, fully electrified, and retrofitted industry with a completely decarbonised energy system.

• Allowing an optimal technological mix can yield, at minimum, a 10% cheaper transition.

• The role of technology adoption in the substantial reductions in overnight investment costs of green industrial technologies is limited due to the high fuel cost shares in the levelled production costs of industrial goods.

• Based on current (2022) energy prices, the energy transition becomes cost-effective.

摘要

由于综合能源系统行业的复杂性,工业活动在综合能源系统模型中往往以有限的技术分辨率表示。在这项研究中,我们丰富了综合能源系统分析优化(IESA-Opt)模型中对工业活动的技术描述,这是一个经同行评议的能源系统优化模型,可以同时为所有综合部门的每小时运行提供最佳能力规划。我们使用这个丰富的模型来分析荷兰四个关键活动的工业脱碳:高价值化学品、碳氢化合物、合成氨和钢铁生产。所做的分析包括:1)探索参考情景下的最优性;2)探索具有不同技术原型的四个极端工业案例的可行性和影响,即生物基工业、氢气基工业、完全电气化工业以及将现有资产改造为碳捕获利用和储存;3)对关键议题进行敏感性分析,如进口生物质、氢气和天然气价格、碳储存潜力、技术学习和烯烃需求。这项研究的结果表明,能源系统可以具备完全以生物为基础的、以氢为基础的、完全电气化的和改装的工业,以实现完全的脱碳。同时,允许一个最佳的技术组合,以产生至少10%的廉价过渡。研究结果还表明,由于燃料部分在工业产品的平摊成本中占很大比重,大幅降低绿色技术的隔夜投资成本对其采用的影响有限。最后,研究揭示了,基于目前(2022年)的能源价格,能源转型是具有成本效益的,到2050年,化石燃料可以从工业和国家组合中完全取代。

更多关于"integrated energy system"的研究请见:

https://www.sciencedirect.com/search?qs=integrated%20energy%20system&pub=Advances%20in%20Applied%20Energy&cid=777797

Abstract

Owing to the complexity of the sector, industrial activities are often represented with limited technological resolution in integrated energy system models. In this study, we enriched the technological description of industrial activities in the integrated energy system analysis optimisation (IESA-Opt) model, a peer-reviewed energy system optimisation model that can simultaneously provide optimal capacity planning for the hourly operation of all integrated sectors. We used this enriched model to analyse the industrial decarbonisation of the Netherlands for four key activities: high-value chemicals, hydrocarbons, ammonia, and steel production. The analyses performed comprised 1) exploring optimality in a reference scenario; 2) exploring the feasibility and implications of four extreme industrial cases with different technological archetypes, namely a bio-based industry, a hydrogen-based industry, a fully electrified industry, and retrofitting of current assets into carbon capture utilisation and storage; and 3) performing sensitivity analyses on key topics such as imported biomass, hydrogen, and natural gas prices, carbon storage potentials, technological learning, and the demand for olefins. The results of this study show that it is feasible for the energy system to have a fully bio-based, hydrogen-based, fully electrified, and retrofitted industry to achieve full decarbonisation while allowing for an optimal technological mix to yield at least a 10% cheaper transition. We also show that owing to the high predominance of the fuel component in the levelled cost of industrial products, substantial reductions in overnight investment costs of green technologies have a limited effect on their adoption. Finally, we reveal that based on the current (2022) energy prices, the energy transition is cost-effective, and fossil fuels can be fully displaced from industry and the national mix by 2050.

Keywords

Industrial decarbonisation

Integrated energy system

Clean conversion technologies

Pathways for industry transition

Green molecules

Graphics

Fig. 1. Structure of the research steps presented in this study.

Fig. 10. Technologies within the four options for industrial decarbonisation.

Fig. 24. Results of the sensitivity analysis performed on the external demand of high-value chemicals. Left: primary energy mix in 2050. Centre: increase in system costs as a consequence of full decarbonisation targets in 2050 for the different levels of HVC demand. Right: Supply and demand of hydrocarbons in 2050 for the different assumed HVC demands.

Fig. 25. Results of the sensitivity analysis performed on the overnight investment cost (ONIC) of novel green technologies in industry. Top left: comparison of system costs between the OPN and high TRL scenario. Top right: comparison of the utilisation of technologies with modified overnight investments. Bottom left: levelised production cost comparison between technologies in both scenarios. Bottom right: comparison of the primary energy mix between the two scenarios.

关于Applied Energy

本期小编:张丽; 审核人:杨睿峰 

《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子11.446,CiteScore 20.4,高被引论文ESI全球工程期刊排名第4,谷歌学术全球学术期刊第50,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》现已正式上线。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!

公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org

点击“阅读原文”

提交文章吧

喜欢我们的内容?

点个“赞”或者“再看”支持下吧!

AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
 最新文章