原文信息
Thermo-hydro-mechanical modeling of geothermal energy systems in deep mines: Uncertainty quantification and design optimization
原文链接:https://www.sciencedirect.com/science/article/pii/S0306261924019147
Highlights
1. 将地热能系统与深井矿山基础设施相结合,既能提高能源效率,又能增强矿山冷却效果。
2. 通过热-水-力(THM)耦合模型评估地热对矿山稳定性的影响。
3. 采用基于距离的广义敏感性分析(DGSA)来量化THM模型参数的敏感性,解决参数不确定性问题。
4. 提出一种基于DGSA的优化框架,用于系统设计,在深井地热系统中为不确定条件下的决策提供稳健的建议和有价值的见解。
Abstract
Geothermal energy extraction through deep mine systems offers the potential to reduce the cost of geothermal systems while meeting the cooling needs of deep mines. However, the injection of cold water into the subsurface triggers strongly coupled thermo-hydro-mechanical (THM) processes that can affect the stability of underground excavations. This study evaluates the impact of geothermal energy extraction on the temperature and stability of a deep mine. By quantifying the sensitivity of the mine temperature and stability to various parameters, we propose a scheme to optimize geothermal energy production, while achieving rapid mine cooling and maintaining stability. We first evaluate the impact of geothermal operations on mine temperature and stability through THM numerical modeling. The simulations show that poro-elastic stress quickly affects mine stability, while thermal stress has a more significant impact on the long-term stability. We then use Distance-based Generalized Sensitivity Analysis (DGSA) to quantify parameter sensitivity. The analysis identifies the distance between the mine system and the geothermal system as the most influential factor. Other important parameters include the injection rate, injection temperature, well spacing, coefficient of thermal expansion, permeability, Young’s modulus, and heat capacity. Finally, we propose a DGSA-based optimization framework that accounts for subsurface uncertainty and validate the optimized results. Our results indicate that, with favorable geological conditions, a rational selection of system design parameters can enhance geothermal energy production while ensuring rapid mine cooling and stability. This study provides essential insights for the optimization of deep mine geothermal systems and supports effective decision-making.
Keywords
Deep geothermal energy;
Thermo-hydro-mechanical modeling;
Sensitivity analysis;
Uncertainty quantification
Graphics
Graphic abstract
关于Applied Energy
本期小编:成沁梓;审核人:黄雨佳
《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子11.2,CiteScore 21.1,谷歌学术全球学术期刊第49,工程期刊第19位,可持续能源子领域第2位,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》现已被ESCI收录。2024年将获得第一个影响因子。全部论文可以免费下载。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!
公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org
点击“阅读原文”
喜欢我们的内容?
点个“赞”或者“再看”支持下吧!
阅读原文