原文信息:
Shifting Demand: Reduction in Necessary Storage Capacity Through Tracking of Renewable Energy Generation
原文链接:
https://www.sciencedirect.com/science/article/pii/S2666792423000100
Highlights
Shifting Demand: Reduction in Necessary Storage Capacity Through Tracking of Renewable Energy Generation
Combining forecasts with EV charging control for enhanced performance.
Demonstrating how different systems can coordinate to track renewable energy generation.
Evaluating the robustness of FAPC to differing weather conditions and forecasts.
Quantifying the tracking performance through differential sizing needs of battery storage.
Abstract
Renewable energy (RE) generation systems are rapidly being deployed on the grid. In parallel, electrified devices are quickly being added to the grid, introducing additional electric loads and increased load flexibility. While increased deployment of RE generation contributes to decarbonization of the grid, it is inherently variable and unpredictable, introducing uncertainty and potential instability in the grid. One way to mitigate this problem is to deploy utility-scale storage. However, in many cases the deployment of utility-scale battery storage systems remain unfeasible due to their cost. Instead, utilizing the increased amounts of data and flexibility from electrified devices on the grid, advanced control can be applied to shift the demand to match RE generation, significantly reducing the capacity of required utility-scale battery storage. This work introduces the novel forecast-aided predictive control (FAPC) algorithm to optimize this load shifting in the presence of forecasts. Extending upon an existing coordinated control framework, the FAPC algorithm introduces a new electric vehicle charging control algorithm that has the capability to incorporate forecasted information in its control loop. This enables FAPC to better track a realistic RE generation signal in a fully correlated simulation environment. Results show that FAPC effectively shifts demand to track a RE generation signal under different weather and operating conditions. It is found that FAPC significantly reduces the required capacity of the battery storage system compared to a baseline control case.
Keywords
Commercial Building Control
Model Predictive Control
Forecasting
Electric Vehicle Charging Control
Shifting Demand
Battery Energy Storage Systems
Graphics
Fig. 1. Flowchart describing the novel framework implemented in this paper.
Fig. 2. Block diagram of the GA subsystem.
Fig. 3. Control system block diagram of the building subsystem.
Fig. 4. Block diagram of the updated EVCS controller.
Fig. 7. Data correlation schematic
关于Applied Energy
本期小编:宋晨曦
《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子11.446,CiteScore 20.4,高被引论文ESI全球工程期刊排名第4,谷歌学术全球学术期刊第50,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》现已正式上线。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!
公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org
点击“阅读原文”
喜欢我们的内容?
点个“赞”或者“再看”支持下吧!