【Advances in Applied Energy】转移需求: 通过跟踪可再生能源发电减少必要的能源存储容量

学术   科学   2024-10-07 18:31   美国  

原文信息:

Shifting Demand: Reduction in Necessary Storage Capacity Through Tracking of Renewable Energy Generation

原文链接:

https://www.sciencedirect.com/science/article/pii/S2666792423000100

Highlights

  • Shifting Demand: Reduction in Necessary Storage Capacity Through Tracking of Renewable Energy Generation

  • Combining forecasts with EV charging control for enhanced performance.

  • Demonstrating how different systems can coordinate to track renewable energy generation.

  • Evaluating the robustness of FAPC to differing weather conditions and forecasts.

  • Quantifying the tracking performance through differential sizing needs of battery storage.

摘要

可再生能源(Renewable energy, RE)发电系统正在迅速部署到电网上。同时,电气化设备正在迅速加入电网,引入额外的电力负荷和增加负荷灵活性。虽然增加部署可再生能源发电有助于电网的去碳化,但它本身是可变和不可预测的,在电网中引入了不确定性和潜在的不稳定性。缓解这一问题的方法之一是部署公用事业规模的存储。然而,在许多情况下,由于成本问题,部署公用事业规模的电池存储系统仍然是不可行的。相反,利用电网上电气化设备增加的数据量和灵活性,可以应用先进的控制手段来改变需求,使之与可再生能源发电相匹配,从而大大减少所需的公用事业规模的电池存储容量。这项工作引入了新颖的预测辅助预测控制(forecast-aided predictive control, FAPC)算法,在预测的情况下优化这种负荷转移。在现有的协调控制框架的基础上,FAPC算法引入了一个新的电动汽车充电控制算法,该算法有能力将预测信息纳入其控制回路。这使得FAPC能够在一个完全相关的模拟环境中更好地跟踪现实的可再生能源发电信号。结果显示,在不同的天气和操作条件下,FAPC有效地转移需求以跟踪可再生能源发电信号。结果发现,与基线控制情况相比,FAPC显著降低了电池存储系统的所需容量。

Abstract

Renewable energy (RE) generation systems are rapidly being deployed on the grid. In parallel, electrified devices are quickly being added to the grid, introducing additional electric loads and increased load flexibility. While increased deployment of RE generation contributes to decarbonization of the grid, it is inherently variable and unpredictable, introducing uncertainty and potential instability in the grid. One way to mitigate this problem is to deploy utility-scale storage. However, in many cases the deployment of utility-scale battery storage systems remain unfeasible due to their cost. Instead, utilizing the increased amounts of data and flexibility from electrified devices on the grid, advanced control can be applied to shift the demand to match RE generation, significantly reducing the capacity of required utility-scale battery storage. This work introduces the novel forecast-aided predictive control (FAPC) algorithm to optimize this load shifting in the presence of forecasts. Extending upon an existing coordinated control framework, the FAPC algorithm introduces a new electric vehicle charging control algorithm that has the capability to incorporate forecasted information in its control loop. This enables FAPC to better track a realistic RE generation signal in a fully correlated simulation environment. Results show that FAPC effectively shifts demand to track a RE generation signal under different weather and operating conditions. It is found that FAPC significantly reduces the required capacity of the battery storage system compared to a baseline control case.

Keywords

Commercial Building Control

Model Predictive Control

Forecasting

Electric Vehicle Charging Control

Shifting Demand

Battery Energy Storage Systems

Graphics


Fig. 1. Flowchart describing the novel framework implemented in this paper. 

Fig. 2. Block diagram of the GA subsystem. 

Fig. 3. Control system block diagram of the building subsystem.

Fig. 4. Block diagram of the updated EVCS controller.

Fig. 7. Data correlation schematic

关于Applied Energy

本期小编:宋晨曦

《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子11.446,CiteScore 20.4,高被引论文ESI全球工程期刊排名第4,谷歌学术全球学术期刊第50,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》现已正式上线。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!

公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org

点击“阅读原文”

喜欢我们的内容?

点个“赞”或者“再看”支持下吧!

AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
 最新文章