本周问题:方与圆
一个圆被画出,刚好接触正方形的四条边。然后在圆内画出一个最大的正方形。
小正方形与大正方形的面积比是多少?(提示:你可能会发现将内正方形旋转一下会很有用。)
再来看大正方形和圆。需要多少个这样的圆才能完全覆盖这个大正方形?
向已故数学家大卫·辛格马斯特(David Singmaster)致敬,他曾基于这个问题写过一篇论文:哪种情况更“适配”——正方形桩插入圆洞,还是圆桩插入正方形洞?(这里“适配更好”是指桩占据洞的比例更大。)
(来源:New Scientist,BrainTwister #47)
原文:
A circle is drawn so it touches the sides of a square, and then the largest square that fits is drawn inside the circle.
What is the ratio between the area of the small square and large square? (Hint: you might find it useful to rotate the inner square.)
Consider the larger square and the circle. How many copies of the circle do you need to completely cover the square?
With a nod to the late mathematician David Singmaster, who wrote a paper based on this problem: which fits better – a square peg in a round hole, or a round peg in a square hole? (By “fits better”, we mean a larger proportion of the hole is taken up by the peg.)
上期问题:欧姆定律
当电阻串联时,总电阻是每个电阻值的总和。
当电阻并联时,总电阻通过以下方法计算:取每个电阻值的倒数,将这些倒数相加,再取结果的倒数。
在这个电路中,使用了三个1欧姆的电阻,总电阻为3/2欧姆:
还有另外三种使用三个1欧姆电阻的电路形式。它们的电阻分别是多少?
一个电路使用了10个1欧姆电阻——三个串联,接着七个并联。它的总电阻是多少?(它接近一个著名的常数。)
你能用9个1欧姆电阻构造出这一数值吗?提示:在这个电路中,4组电阻对以串联的方式出现,因此等效为4个2欧姆电阻和1个1欧姆电阻。
答案:
以下是使用三个1欧姆电阻可能构成的另外三种电路。它们的总电阻分别为 1/3 欧姆、2/3 欧姆和 3 欧姆:
所描述的电路由10个1欧姆电阻组成,其总电阻为22/7欧姆(约等于π)。
使用9个1欧姆电阻实现22/7欧姆的唯一电路(除了等效的重新排列外)如下所示:
原文:
These are the three other possible circuits using three 1-ohm resistors. Their overall resistances are 1/3, 2/3 and 3 ohms:
(图片略)
The circuit described, made of 10 1-ohm resistors, has a resistance of 22/7 ohms (approximately π).
The unique (except for equivalent rearrangements) circuit achieving 22/7 ohms with nine 1-ohm resistors looks like this:
(图片略)