本周问题:平方和立方
取两个小于20的正整数。这两个数的平方差是一个完全立方数,而它们的立方差是一个完全平方数。(“完全”意味着平方根或立方根是整数。)
这两个数是什么?
在50到100之间有一个数,你可以将这两个数都乘以这个数,得到另一对具有相同性质的数。这个数是什么?
这个数具有什么性质,使得这种操作可行?你如何利用这个想法找到更多这样的数对?
(来源:New Scientist,BrainTwister #49)
原文:
Take two positive whole numbers that are both less than 20. The difference in the squares of these numbers is a perfect cube and the difference in their cubes is a perfect square. (Perfect means that the root of the square or cube is a whole number.)
What are the two numbers?
There is a number between 50 and 100 that you can multiply both these numbers by and get another pair with the same property. What is it?
What property does this number have that makes this work? How can you use this idea to find more of these pairs of numbers?
上期问题:石头剪子布
在剪刀石头布游戏中,两个玩家同时选择并展示其中一个选项,看看谁获胜。纸包石头,剪刀剪纸,石头钝剪刀——每个胜利者得1分,失败者得-1分。如果两者选择相同的选项,则两者得0分。
如果两个玩家随机选择石头、纸或剪刀,经过10轮游戏,他们的总得分最大值是多少?
当纸包石头时,我们仍然有一块石头;虽然剪刀剪纸,但纸便宜。不过石头钝剪刀更为严重。因此,在一个变体中,我们决定在这种情况(石头钝剪刀)下奖励2分,失败者得-2分。如果不再随机选择,每个玩家在这种情况下的最佳策略是什么?
如果我们将“石头钝剪刀”这一结果分配为3分和-3分,或者一般地为N分,这将如何变化?
答案:
由于每次游戏都会导致一个玩家的分数增加,另一个玩家的分数减少(或保持不变),因此对于某个值N,分数将始终为N和-N,因此在任何次数的游戏之后,总分将为0。对于修改后的游戏,玩家应该选择布的次数是剪刀的两倍(因为布对石头有双倍的优势),而选择剪刀的次数与石头相同。所有概率的总和必须为1,因此每次我们应该以1/4的概率选择石头,1/2的概率选择布,1/4的概率选择剪刀。如果我们在石头砸剪刀时奖励3分和-3分,那么布、石头和剪刀的概率将变为3/5、1/5、1/5。如果我们奖励N分和-N分,比例必须是N:1:1。
原文:
Since each play results in one player’s score increasing and the other decreasing (or staying the same), the scores will always be N and -N, for some value of N, so the total after any number of plays will be 0. For the modified game, a player should pick paper twice as often as scissors (since it is twice as good against rock) and scissors equally as often as rock. All probabilities must add to one, so each time we should choose rock with probability 1/4, paper with probability 1/2 and scissors with probability 1/4. If we award 3 and -3 points when rock blunts scissors, the probabilities for paper, rock and scissors become 3/5, 1/5, 1/5. If we award N and -N points, the ratio must be N : 1 : 1.