金子兵教授团队:首次揭示人类视网膜融合基因图谱并发现调控干细胞分化方向融合RNA

文摘   2024-08-23 18:38   北京  

引言



嵌合RNA对人类干细胞分化、干细胞性维持和中枢神经系统发育具有调节作用,已有研究在视网膜发育过程中发现了许多新的嵌合RNA。


北京同仁医院金子兵教授/晋康新教授团队在国际知名学术期刊eLife上发表了题为“RNA fusion in human retinal development”的研究论文,同单位的王文主任为本文第一作者。该研究首次绘制了人类视网膜的融合RNA图谱,并发现CTNNBIP1-CLSTN1融合RNA具有调控人视网膜细胞分化方向的重要功能,CTNNBIP1-CLSTN1敲低使神经视网膜细胞分化效能降低,而有效促进视网膜色素上皮(RPE)分化。






背景



在癌细胞和健康的人类细胞中都发现了嵌合RNA。它是由不同亲本基因的核苷酸序列组成的转录本,可以进一步形成功能受损的野生型蛋白质、全新的融合蛋白质和新的非编码RNA,对细胞分化和个体发育产生调节作用,其在神经系统发育中的作用尤为关键。基于人类胚胎电子干细胞来源的视网膜类器官(ROs),从第0天到第120天,贯穿整个发育中的ROs的嵌合RNA的表达图谱。研究揭示了CTCL普遍存在于人类视网膜、ROs和视网膜细胞系中,其功能的丧失使干细胞同视网膜色素上皮细胞一样的结局,即以牺牲视网膜细胞为代价。



嵌合RNA伴随整个视网膜发育过程

嵌合RNA作为转录组的一部分广泛存在于人类正常组织和肿瘤组织中,可以调节单个细胞的活动。研究发现嵌合RNA在RO发育的所有阶段都有表达。嵌合RNA CTCL在人类视网膜中广泛表达,但在小鼠视网膜中不表达,对于视网膜干细胞(RPCs)分化为神经视网膜(NR)或视网膜色素上皮(RPE)至关重要。CTCL表达水平相对较高的RPCs会分化为NR,而CTCL表达水平相对较低的RPCs会向RPE分化。



图1.嵌合RNA检测的一般方案

注:(上图)从多功能干细胞中生成人类视网膜类器官(ROs)的程序。(中图)D0-120人ROs用于批量RNA测序。(下图)嵌合RNA筛选过程和标准的说明



CTCL存在于人类的视网膜发育的多个阶段




研究从D60的人类的ROs中提取总RNA,然后使用逆转录和Sanger测序,使用特定引物扩增CTNNBIP1和CLSTN1之间包含融合位点的片段一致的阳性结果。发现CTCL普遍存在于人体内的视网膜、视网膜类器官、体外视网膜细胞系中,并不是H9细胞系独有的现象。CTCL的动态存在,特别是结构内的亚型,表明它可能在人类视网膜发育中发挥重要作用。



图2.在视网膜类器官中存在四种CTCL亚型(ROs)

注:(A)CTCL在指定阶段的每个亚型的跨越独特读取的热图。(B)CTCL的四种亚型的结构示意图。(C)通过定量逆转录聚合酶链反应(qRT-PCR)验证了D60 ROs中CTCL的4个亚型。(D) Sanger测序来验证CTCL的三种亚型。





CTCL敲低阻碍了NR分化,但促进了RPE分化

根据此前嵌合CTCL RNA 表达水平情况,研究团队重点研究了 D60 In-frame CTCL以探索其功能。结果揭示随机shRNA组样本显示出典型的 RO 形态,并产生了光感受器前体 (CRX+)。在shCTCL组中,而类器官形态发生变化,外层变薄 。综合多项实验结果,研究团队发现CTCL对 RO 的分化至关重要,并且CTCL敲低会以牺牲神经视网膜细胞为代价促进RPE细胞的发育。



图3.CTCL的抑制阻碍了神经视网膜(NR)细胞的分化,但促进了视网膜色素上皮细胞(RPE)的分化

注:(A)A模式说明了shRNA实验。本实验采用CRX-tdTomato报告线。shCTCL或shamRNA慢病毒在D12的三个独立实验中转染视网膜细胞。除那些用于敲除效率分析的样本外,所有用于shRNA实验的样本均于第60天采集。在感染后48-72小时采集样本,以检测敲除效率。



CTCL基因敲低ROs的潜在分子变化




CTCL在ROs的正常发育中具有积极作用,CTCL缺失可促进RPCs向RPE的分化。最显著的富集途径是上皮-间充质转化(EMT)。而大多数emt相关基因在shCTCL处理的类器官中相对高表达,这对于脊椎动物的神经嵴分层和发育过程中不同组织的生成尤为重要。因此,下调CTCL的表达激活了EMT通路,从而改变了细胞分化的方向。



图4.CTCL基因敲低的视网膜类器官的转录组学改变

注:(A)火山图显示了差异表达的基因。(B)shCTCL-和干扰shRNA处理的类器官之间DEGs的热图。(C)上调和下调的DEG的功能富集分析。(D)基因集合富集分析(GSEA)结果显示,使用c8内参基因集在shCTCL处理的类器官中富集了基因集。(E)RPE相关基因的表达。





本文小结



该研究首次明确了融合RNA在人视网膜正常发育中广泛且持续表达,绘制了多时间点正常人视网膜发育中嵌合RNA表达图谱,为异常视网膜发育和疾病状态下的视网膜中的嵌合RNA研究明确了基线,揭示了RNA在人视网膜发育及细胞分化中的关键作用,是干细胞视网膜再生领域的重要发现。


信  源

Wang W, Zhang X, Zhao N, Xu ZH, Jin K, Jin ZB. RNA fusion in human retinal development. Elife. 2024;13:e92523. Published 2024 Jan 2. doi:10.7554/eLife.92523

参考文献

1.Cheng YM, Ma C, Jin K, Jin ZB. 2023. Retinal organoid and gene editing for basic and translational research. Vision Research 210:108273. DOI: https://doi.org/10.1016/j.visres.2023.108273, PMID: 37307693

2.Clevers H. 2016. Modeling development and disease with organoids. Cell 165:1586–1597. DOI: https://doi.org/10.1016/j.cell.2016.05.082, PMID: 27315476

3. Cowan CS, Renner M, De Gennaro M, Gross-Scherf B, Goldblum D, Hou Y, Munz M, Rodrigues TM, Krol J, Szikra T, Cuttat R, Waldt A, Papasaikas P, Diggelmann R, Patino-Alvarez CP, Galliker P, Spirig SE, Pavlinic D, Gerber-Hollbach N, Schuierer S, et al. 2020. Cell types of the human retina and its organoids at single-cell resolution. Cell 182:1623–1640. DOI: https://doi.org/10.1016/j.cell.2020.08.013, PMID: 32946783

4. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. 2023. Samtools. GitHub. https://github.com/samtools/samtools

5. Deng WL, Gao ML, Lei XL, Lv JN, Zhao H, He KW, Xia XX, Li LY, Chen YC, Li YP, Pan D, Xue T, Jin ZB. 2018. Gene correction reverses ciliopathy and photoreceptor loss in IPSC-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Reports 10:012. DOI:https://doi.org/10.1016/j.stemcr.2018.05.012, PMID: 29874627

6. Elfman J, Li H. 2018. Chimeric RNA in cancer and stem cell differentiation. Stem Cells InteRNAtional 2018:3178789. DOI: https://doi.org/10.1155/2018/3178789, PMID: 30510584

7. Fu X, Zhu X, Qin F, Zhang Y, Lin J, Ding Y, Yang Z, Shang Y, Wang L, Zhang Q, Gao Q. 2018. Linc00210 drives Wnt/β-catenin signaling activation and liver tumor progression through CTNNBIP1-dependent manner. Molecular Cancer 17:73. DOI: https://doi.org/10.1186/s12943-018-0783-3, PMID: 29540185

8. Hoon M, Okawa H, Della Santina L, Wong ROL. 2014. Functional architecture of the retina: development and disease. Progress in Retinal and Eye Research 42:44–84. DOI: https://doi.org/10.1016/j.preteyeres.2014.06. 003, PMID: 24984227

9. Hu X, Wang Q, Tang M, Barthel F, Amin S, Yoshihara K, Lang FM, Martinez-Ledesma E, Lee SH, Zheng S, Verhaak RGW. 2018. TumorFusions: an integrative resource for cancer-associated transcript fusions. Nucleic Acids Research 46:D1144–D1149. DOI: https://doi.org/10.1093/nar/gkx1018, PMID: 29099951

10. Huang L, Li R, Ye L, Zhang S, Tian H, Du M, Qu C, Li S, Li J, Yang M, Wu B, Chen R, Huang G, Zhong L, Yang H, Yu M, Shi Y, Wang C, Zhang H, Chen W, et al. 2023. Deep Sc-RNA sequencing decoding the molecular dynamic architecture of the human retina. Science China Life Sciences 66:496–515. DOI: https://doi.org/10.1007/ s11427-021-2163-1, PMID: 36115892

11. Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, Takahashi M. 2019. Stemming retinal regeneration with pluripotent stem cells. Progress in Retinal and Eye Research 69:38–56. DOI: https://doi.org/10.1016/j. preteyeres.2018.11.003, PMID: 30419340

12. Kim HP, Cho GA, Han SW, Shin JY, Jeong EG, Song SH, Lee WC, Lee KH, Bang D, Seo JS, Kim JI, Kim TY. 2014a. Novel fusion transcripts in human gastric cancer revealed by transcriptome analysis. Oncogene 33:5434–5441. DOI: https://doi.org/10.1038/onc.2013.490, PMID: 24240688

13. Kim YS, Yi BR, Kim NH, Choi KC. 2014b. Role of the epithelial-mesenchymal transition and its effects on embryonic stem cells. Experimental & Molecular Medicine 46:e108. DOI: https://doi.org/10.1038/emm.2014. 44, PMID: 25081188

14. Kim S, Lowe A, Dharmat R, Lee S, Owen LA, Wang J, Shakoor A, Li Y, Morgan DJ, Hejazi AA, Cvekl A, DeAngelis MM, Zhou ZJ, Chen R, Liu W. 2019. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. PNAS 116:10824–10833. DOI:https://doi.org/10.1073/pnas.1901572116, PMID: 31072937

15. Kim D, Park C. 2022. Hisat2. 5086938. GitHub. https://github.com/DaehwanKimLab/hisat2

16. Kolde R. 2019. Pheatmap. 1.0.12. RDocumentation. https://rdocumentation.org/packages/pheatmap/versions/1. 0.12

17. Lågstad S. 2023. Chimeraviz. 1.28.0. Bioconductor. https://www.bioconductor.org/packages/release/bioc/html/ chimeraviz.html

18. Langabeer SE, Walker H, Rogers JR, Burnett AK, Wheatley K, Swirsky D, Goldstone AH, Linch DC. 1997. Incidence of AML1/ETO fusion transcripts in patients entered into the MRC AML trials: MRC Adult Leukaemia Working Party. British JouRNAl of Haematology 99:925–928. DOI:https://doi.org/10.1046/j.1365-2141.1997. 4663270.x, PMID: 9432044

19. Li H, Wang J, Mor G, Sklar J. 2008. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 321:1357–1361. DOI: https://doi.org/10.1126/science.1156725, PMID: 18772439

20. Li YP, Wang YT, Wang W, Zhang X, Shen RJ, Jin K, Jin LW, Jin ZB. 2022. Second hit impels oncogenesis of retinoblastoma in patient-induced pluripotent stem cell-derived retinal organoids: direct evidence for Knudson’s theory. PNAS Nexus 1:gac162. DOI: https://doi.org/10.1093/pnasnexus/pgac162, PMID: 36714839

21. Liao Y, Smyth GK, Shi W. 2021. featureCounts: a Ultrafast and accurate read summarization program. SourceForge.https://subread.sourceforge.net/featureCounts.html

22. Lidgerwood GE, Senabouth A, Smith-Anttila CJA, Gnanasambandapillai V, Kaczorowski DC, Amann-Zalcenstein D, Fletcher EL, Naik SH, Hewitt AW, Powell JE, Pébay A. 2021. Transcriptomic profiling of human pluripotent stem cell-derived retinal pigment epithelium over time. Genomics, Proteomics & Bioinformatics 19:223–242. DOI: https://doi.org/10.1016/j.gpb.2020.08.002, PMID: 33307245

23. Liu H, Zhang Y, Zhang YY, Li YP, Hua ZQ, Zhang CJ, Wu KC, Yu F, Zhang Y, Su J, Jin ZB. 2020. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin. PNAS 117:33628–33638. DOI: https:// doi.org/10.1073/pnas.2011780117, PMID: 33318192

24. Liu H, Hua ZQ, Jin ZB. 2021. Modeling human retinoblastoma using embryonic stem cell-derived retinal organoids. STAR Protocols 2:100444. DOI: https://doi.org/10.1016/j.xpro.2021.100444, PMID: 33899024

25. Lowe A, Harris R, Bhansali P, Cvekl A, Liu W. 2016. Intercellular adhesion-dependent cell survival and ROCK regulated actomyosin-driven forces mediate self-formation of a retinal organoid. Stem Cell Reports 6:743–756. DOI:https://doi.org/10.1016/j.stemcr.2016.03.011, PMID: 27132890

25. Lu Y, Shiau F, Yi W, Lu S, Wu Q, Pearson JD, Kallman A, Zhong S, Hoang T, Zuo Z, Zhao F, Zhang M, Tsai N, Zhuo Y, He S, Zhang J, Stein-O’Brien GL, Sherman TD, Duan X, Fertig EJ, et al. 2020. Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development. Developmental Cell 53:473–491. DOI: https://doi.org/10.1016/j.devcel.2020.04.009, PMID: 32386599

26. Ma C, Jin K, Jin ZB. 2022. Generation of human patient iPSC-derived retinal organoids to model retinitis pigmentosa. JouRNAl of Visualized Experiments 01:64045. DOI: https://doi.org/10.3791/64045, PMID: 35786611

27. Maruotti J, Sripathi SR, Bharti K, Fuller J, Wahlin KJ, Ranganathan V, Sluch VM, Berlinicke CA, Davis J, Kim C, Zhao L, Wan J, Qian J, Corneo B, Temple S, Dubey R, Olenyuk BZ, Bhutto I, Lutty GA, Zack DJ. 2015. Small molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. PNAS 112:10950–10955. DOI: https://doi.org/10.1073/pnas.1422818112, PMID: 26269569

28. Masland RH. 2012. The neuronal organization of the retina. Neuron 76:266–280. DOI: https://doi.org/10.1016/j. neuron.2012.10.002, PMID: 23083731

29. Mehani B, Narta K, Paul D, Raj A, Kumar D, Sharma A, Kaurani L, Nayak S, Dash D, Suri A, Sarkar C, Mukhopadhyay A. 2020. Fusion transcripts in normal human cortex increase with age and show distinct genomic features for single cells and tissues. Scientific Reports 10:1368. DOI: https://doi.org/10.1038/ s41598-020-58165-6, PMID: 31992760

30. Mertens F, Johansson B, Fioretos T, Mitelman F. 2015. The emerging complexity of gene fusions in cancer. Nature Reviews Cancer 15:371–381. DOI: https://doi.org/10.1038/nrc3947, PMID: 25998716

31. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, et al. 2003. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics 34:267–273. DOI: https://doi.org/10.1038/ng1180, PMID: 12808457

32. Nagase T, Ishikawa K, Suyama M, Kikuno R, Hirosawa M, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O. 1998. Prediction of the coding sequences of unidentified human genes XII: the complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Research 5:355–364. DOI: https://doi. org/10.1093/dnares/5.6.355, PMID: 10048485

33. Nicorici D, Satalan M, Edgren H, Kangaspeska S, Murumagi A, Kallioniemi O, Virtanen S, Kilkku O. 2014 FusionCatcher - a tool for finding somatic fusion genes in paired-end RNA-sequencing data. bioRxiv. DOI: https://doi.org/10.1101/011650

34. Nicorici D. 2023. Fusioncatcher. ebc46fd. GitHub. https://github.com/ndaniel/fusioncatcher

35. Ou MY, Xiao Q, Ju XC, Zeng PM, Huang J, Sheng AL, Luo ZG. 2021. The CTNNBIP1-CLSTN1 fusion transcript regulates human neocortical development. Cell Reports 35:109290. DOI: https://doi.org/10.1016/j.celrep. 2021.109290, PMID: 34192541

36. Pan D, Xia XX, Zhou H, Jin SQ, Lu YY, Liu H, Gao ML, Jin ZB. 2020. COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids. Stem Cell Research & Therapy 11:366. DOI: https://doi.org/10.1186/s13287-020-01883-5, PMID: 32831148

37. Pedersen TL. 2022. Ggplot2. 3.3.6. RDocumentation. https://rdocumentation.org/packages/ggplot2/versions/3. 3.6

38. Qin F, Song Z, Babiceanu M, Song Y, Facemire L, Singh R, Adli M, Li H. 2015. Discovery of CTCF-sensitive cis-spliced fusion RNAs between adjacent genes in human prostate cells. PLOS Genetics 11:e1005001. DOI: https://doi.org/10.1371/jouRNAl.pgen.1005001, PMID: 25658338

39. R Development Core Team . 2020. R: A language and environment for statistical computing. 4.0.3. Vienna, Austria. R Foundation for Statistical Computing. http://www.R-project.org

40. Singh S, Qin F, Kumar S, Elfman J, Lin E, Pham LP, Yang A, Li H. 2020. The landscape of chimeric RNAs in non-diseased tissues and cells. Nucleic Acids Research 48:1764–1778. DOI: https://doi.org/10.1093/nar/ gkz1223, PMID: 31965184

41. Singh S, Abu-Zaid A, Jin H, Fang J, Wu Q, Wang T, Feng H, Quarni W, Shao Y, Maxham L, Abdolvahabi A, Yun MK, Vaithiyalingam S, Tan H, Bowling J, Honnell V, Young B, Guo Y, Bajpai R, Pruett-Miller SM, et al. 2022. Targeting KDM4 for treating PAX3-FOXO1-driven alveolar rhabdomyosarcoma. Science Translational Medicine 14:eabq2096. DOI: https://doi.org/10.1126/scitranslmed.abq2096, PMID: 35857643

42. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102:15545–15550. DOI: https://doi.org/10.1073/pnas.0506580102, PMID: 16199517

43. Sun LF, Zhang B, Chen XJ, Wang XY, Zhang BW, Ji YY, Wu KC, Wu J, Jin ZB. 2019. Circular RNAs in human and vertebrate neural retinas. RNA Biology 16:821–829. DOI: https://doi.org/10.1080/15476286.2019.1591034, PMID: 30874468

44. Tang Y, Qin F, Liu A, Li H. 2017. Recurrent fusion RNA DUS4L-BCAP29 in non-cancer human tissues and cells. Oncotarget 8:31415–31423. DOI: https://doi.org/10.18632/oncotarget.16329, PMID: 28415823

45. Tang Y, Ma S, Wang X, Xing Q, Huang T, Liu H, Li Q, Zhang Y, Zhang K, Yao M, Yang GL, Li H, Zang X, Yang B, Guan F. 2019. Identification of chimeric RNAs in human infant brains and their implications in neural differentiation. The InteRNAtional JouRNAl of Biochemistry & Cell Biology 111:19–26. DOI: https://doi.org/10. 1016/j.biocel.2019.03.012, PMID: 30959201

46. Wagih O. 2017. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics 33:3645–3647. DOI: https://doi.org/10.1093/bioinformatics/btx469, PMID: 29036507

47. Wu H, Li X, Li H. 2019. Gene fusions and chimeric RNAs, and their implications in cancer. Genes & Diseases 6:385–390. DOI:https://doi.org/10.1016/j.gendis.2019.08.002, PMID: 31832518

48. Xie Z, Tang Y, Su X, Cao J, Zhang Y, Li H. 2019. PAX3-FOXO1 escapes miR-495 regulation during muscle differentiation. RNA Biology 16:144–153. DOI: https://doi.org/10.1080/15476286.2018.1564464, PMID: 30593263

49. Xie H, Zhang W, Zhang M, Akhtar T, Li Y, Yi W, Sun X, Zuo Z, Wei M, Fang X, Yao Z, Dong K, Zhong S, Liu Q, Shen Y, Wu Q, Wang X, Zhao H, Bao J, Qu K, et al. 2020. Chromatin accessibility analysis reveals regulatory dynamics of developing human retina and hiPSC-derived retinal organoids. Science Advances 6:eaay5247. DOI: https://doi.org/10.1126/sciadv.aay5247, PMID: 32083182

50. Yu G. 2012. clusterProfiler. 3.0.4. RDocumentation. https://rdocumentation.org/packages/clusterProfiler/ versions/3.0.4

51. Zauhar R, Biber J, Jabri Y, Kim M, Hu J, Kaplan L, Pfaller AM, Schäfer N, Enzmann V, Schlötzer-Schrehardt U, Straub T, Hauck SM, Gamlin PD, McFerrin MB, Messinger J, Strang CE, Curcio CA, Dana N, Pauly D, Grosche A, et al. 2022. As in real estate, location matters: cellular expression of complement varies between macular and peripheral regions of the retina and supporting tissues. Frontiers in Immunology 13:895519. DOI: https://doi.org/10.3389/fimmu.2022.895519, PMID: 35784369

52. Zhang X, Wang W, Jin ZB. 2021. Retinal organoids as models for development and diseases. Cell Regeneration 10:33. DOI: https://doi.org/10.1186/s13619-021-00097-1, PMID: 34719743


本视频/资讯/文章的内容不能以任何方式取代专业的医疗指导,也不应被视为诊疗建议。医脉通是专业的在线医生平台,“感知世界医学脉搏,助力中国临床决策”是平台的使命。医脉通旗下拥有「临床指南」「用药参考」「医学文献王」「医知源」「e研通」「e脉播」等系列产品,全面满足医学工作者临床决策、获取新知及提升科研效率等方面的需求。

点击「阅读原文」查看原文~

医脉通眼科频道
关注医脉通眼科频道,快速获取眼科资讯,病例、指南、资源等随时学习。
 最新文章