接英教授团队:低水平红光(LLRL)近视儿童等效球镜误差和眼轴长度的作用

文摘   2024-08-24 16:46   河北  


引言:低水平红光(LLRL)被用于儿童近视控制的干预措施越来越被重视。LLRL的工作原理是将特定波段的光(通常为650 nm)集中到激光束中照射视网膜。


为了评估650 nm LLRL治疗近视的有效性和安全性,北京同仁医院接英教授团队在国际知名医学期刊JAMA Ophthalmology(IF=7.8,中科院一区)发表了题为“Daily Low-Level Red Light for Spherical Equivalent Error and Axial Length in Children With Myopia:A Randomized Clinical Trial”的研究论文,研究表明,每天使用 650 nm LLRL 一年可以减缓近视儿童 SER 和 AL 的进展。







背景



650 nm的LLRL已被相关研究证明有助于减缓近视进展。然而,LLRL是否对没有近视的儿童有类似的影响目前还不清楚,并且出于伦理考虑,通常不会为他们提供干预措施。但是一些患有正视或远视的儿童可能会迅速发展近视,与同龄人相比,他们的远视储备会迅速耗尽。此外,之前的一项研究报告了LLRL治疗依从性与近视控制疗效之间的剂量反应关系。值得探讨的是,如之前的研究所采用的,每周7天使用LLRL是否比每周5天使用LLLR更有效。




研究设计



本研究为一项单中心、单盲、随机对照试验,共纳入336名 6 至 12 岁的儿童,这些参与者被按照1:1的比例随机分配到红光组和对照组。其中红光组给予650nm低强度单波长红光干预,每天照射两次,每次3分钟,中间间隔4小时以上,每周照射7天,不设休息间隔;而对照组则不提供其他干预措施。另外,在这两组中,近视儿童均可配戴单光框架镜,尚未近视的儿童不戴镜。本试验基线测量于 2021 年 8 月至 9 月完成,数据分析时间为 2023 年 3 月至 7 月。



图1 研究设计流程图


2021 年 8 月至 9 月,对 451 名已登记的儿童进行了资格评估;104 名儿童不符合纳入标准,11 名拒绝签署知情同意书。剩下的336 名参与者被纳入本研究,两组受试者随机化分配。6 个月时 LLRL 组和对照组的失访率分别为 4.2%(168 人中的 7 人)和 5.4%(168 人中的 9 人),12 个月时 LLRL 组和对照组的失访率分别为 6.5%(168 人中的 11 人)和 9.5%(168 人中的 16 人)。


表1 参与者的人口统计学和基线特征:受试者基线检查结果提示两组在人口统计学、初始眼轴长度、眼压等方面没有显著差异




研究结果



1.主要终点

1)6 个月时 LLRL 组和对照组的 SER 平均 (SD) 变化分别为 0.15 (0.16) D 和 -0.26 (0.21) D(差异,-0.41 D;95% CI,-0.48 至 -0.34 D;P  < .001);


2)12 个月时 LLRL 组和对照组的 SER 平均 (SD) 变化分别为 0.24 (0.27) D 和 -0.65 (0.33) D(差异,-0.89 D;95% CI,-0.95 至 -0.83 D;P  < .001)6 个月时,LLRL 组和对照组的 AL 平均 (SD) 变化分别为 -0.06 (0.08) 毫米和 0.13 (0.12) 毫米(差异,0.19 毫米;95% CI,0.16 至 0.22 毫米;P  < .001);


3)12 个月时,LLRL 组和对照组的 AL 平均 (SD) 变化分别为 -0.11 (0.10) 毫米和 0.26 (0.16) 毫米(差异,0.37 毫米;95% CI,0.34 至 0.40 毫米;P  < .001);



图2 不同时间点测量的结果线图:显示了从基线到 6 个月和 12 个月随访的 AL 和 SER 的变化趋势


表2 各项结果一年内的变化



2.次要终点(部分摘录)

LLRL组和对照组的1年近视发生率分别为7.14%(4/56 患者)和23.21%(13/56患者)。对照组近视发生率高于LLRL组(16.07%;95%CI,2.66%至29.35%;P= .02)。对照组和LLRL组UDVA的平均(SD)变化分别为-0.09(0.32)和0.02(0.36),平均差为-0.11(95%CI,-0.18至-0.04;P < .001)。




本文小结



本研究采用随机单盲对照试验研究了每天使用650 nm LLRL在中国大陆地区儿童中治疗近视的有效性和安全性。研究表明通过持续一年每天使用 650 nm LLRL ,SER 和 AL 的平均变化分别为 -0.11 mm 和 0.24 D,中心凹下 ChT 的平均变化为 16.46 μm。并且眼底和 OCT 图像分析的解释显示没有不良事件或视网膜损伤。这为今后低强度红光照射用于我国儿童近视的防控提供重要依据。




信  源

Cao K, Tian L, Ma DL, et al. Daily Low-Level Red Light for Spherical Equivalent Error and Axial Length in Children With Myopia: A Randomized Clinical Trial. JAMA Ophthalmol. 2024;142(6):560-567. doi:10.1001/jamaophthalmol.2024.0801

参考文献

1.Jiang Y, Zhu Z, Tan X, et al. . Effect of repeated low-level red-light therapy for myopia control in children: a multicenter randomized controlled trial. Ophthalmology. 2022;129(5):509-519. doi:10.1016/j.ophtha.2021.11.023

2.Tian L, Cao K, Ma DL, et al. . Investigation of the efficacy and safety of 650 nm low-level red light for myopia control in children: a randomized controlled trial. Ophthalmol Ther. 2022;11(6):2259-2270. doi:10.1007/s40123-022-00585-w

3.Xiong R, Zhu Z, Jiang Y, et al. . Longitudinal changes and predictive value of choroidal thickness for myopia control after repeated low-level red-light therapy. Ophthalmology. 2023;130(3):286-296. doi:10.1016/j.ophtha.2022.10.002

4.Zhou L, Xing C, Qiang W, Hua C, Tong L. Low-intensity, long-wavelength red light slows the progression of myopia in children: an Eastern China-based cohort. Ophthalmic Physiol Opt. 2022;42(2):335-344. doi:10.1111/opo.12939

5.Dong J, Zhu Z, Xu H, He M. Myopia control effect of repeated low-level red-light therapy in Chinese children: a randomized, double-blind, controlled clinical trial. Ophthalmology. 2023;130(2):198-204. doi:10.1016/j.ophtha.2022.08.024

6.Xiong R, Zhu Z, Jiang Y, et al. . Sustained and rebound effect of repeated low-level red-light therapy on myopia control: a 2-year post-trial follow-up study. Clin Exp Ophthalmol. 2022;50(9):1013-1024. doi:10.1111/ceo.14149

7.Guo B, Wu H, Cheung SW, Cho P. Manual and software-based measurements of treatment zone parameters and characteristics in children with slow and fast axial elongation in orthokeratology. Ophthalmic Physiol Opt. 2022;42(4):773-785. doi:10.1111/opo.12981

8.Chen LJ, Li FF, Lu SY, et al. . Association of polymorphisms in ZFHX1B, KCNQ5 and GJD2 with myopia progression and polygenic risk prediction in children. Br J Ophthalmol. 2021;105(12):1751-1757. doi:10.1136/bjophthalmol-2020-318708

9.Li SM, Wei S, Atchison DA, et al. . Annual incidences and progressions of myopia and high myopia in Chinese schoolchildren based on a 5-year cohort study. Invest Ophthalmol Vis Sci. 2022;63(1):8. doi:10.1167/iovs.63.1.8

10.Cohen Y, Iribarren R, Ben-Eli H, Massarwa A, Shama-Bakri N, Chassid O. Light intensity in nursery schools: a possible factor in refractive development. Asia Pac J Ophthalmol (Phila). 2022;11(1):66-71. doi:10.1097/APO.0000000000000474

11.Tian L, Cao K, Ma DL, et al. . Six-month repeated irradiation of 650 nm low-level red light reduces the risk of myopia in children: a randomized controlled trial. Int Ophthalmol. 2023;43(10):3549-3558. doi:10.1007/s10792-023-02762-7

12.Chen Z, Zhou J, Xue F, Qu X, Zhou X. Two-year add-on effect of using low concentration atropine in poor responders of orthokeratology in myopic children. Br J Ophthalmol. 2022;106(8):1069-1072.

13.Tomiyama ES, Berntsen DA, Richdale K. Peripheral refraction with toric orthokeratology and soft toric multifocal contact lenses in myopic astigmatic eyes. Invest Ophthalmol Vis Sci. 2022;63(8):10. doi:10.1167/iovs.63.8.10

14.Yam JC, Jiang Y, Lee J, et al. . The association of choroidal thickening by atropine with treatment effects for myopia: two-year clinical trial of the low-concentration atropine for myopia progression (LAMP) Study. Am J Ophthalmol. 2022;237:130-138. doi:10.1016/j.ajo.2021.12.014

15.Ye L, Xu H, Shi Y, et al. . Efficacy and safety of consecutive use of 1% and 0.01% atropine for myopia control in Chinese children: the atropine for children and adolescent myopia progression study. Ophthalmol Ther. 2022;11(6):2197-2210. doi:10.1007/s40123-022-00572-1

16.Beasley IG, Davies LN, Logan NS. The effect of peripheral defocus on axial growth and modulation of refractive error in hyperopes. Ophthalmic Physiol Opt. 2022;42(3):534-544. doi:10.1111/opo.12951

17.Zhang HY, Lam CSY, Tang WC, Leung M, To CH. Defocus inc multiple segments spectacle lenses changed the relative peripheral refraction: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2020;61(5):53. doi:10.1167/iovs.61.5.53

18.He M, Xiang F, Zeng Y, et al. . Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA. 2015;314(11):1142-1148. doi:10.1001/jama.2015.10803

19.Zadnik K, Mutti DO. Outdoor activity protects against childhood myopia-let the sun shine in. JAMA Pediatr. 2019;173(5):415-416. doi:10.1001/jamapediatrics.2019.0278

20.Huang J, Wen D, Wang Q, et al. . Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. Ophthalmology. 2016;123(4):697-708. doi:10.1016/j.ophtha.2015.11.010

21.Chia A, Chua WH, Cheung YB, et al. . Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (atropine for the treatment of myopia 2). Ophthalmology. 2012;119(2):347-354. doi:10.1016/j.ophtha.2011.07.031

22.Fu A, Stapleton F, Wei L, et al. . Effect of low-dose atropine on myopia progression, pupil diameter and accommodative amplitude: low-dose atropine and myopia progression. Br J Ophthalmol. 2020;104(11):1535-1541. doi:10.1136/bjophthalmol-2019-315440

23.Wei S, Li SM, An W, et al. . Safety and efficacy of low-dose atropine eyedrops for the treatment of myopia progression in Chinese children: a randomized cinical trial. JAMA Ophthalmol. 2020;138(11):1178-1184. doi:10.1001/jamaophthalmol.2020.3820

24.Repka MX, Weise KK, Chandler DL, et al. ; Pediatric Eye Disease Investigator Group . Low-dose 0.01% atropine eye drops vs placebo for myopia control: a randomized clinical trial. JAMA Ophthalmol. 2023;141(8):756-765. doi:10.1001/jamaophthalmol.2023.2855

25.Chen Y, Xiong R, Chen X, et al. . Efficacy comparison of repeated low-level red light and low-dose atropine for myopia control: a randomized controlled trial. Transl Vis Sci Technol. 2022;11(10):33. doi:10.1167/tvst.11.10.33

26.Ivandic BT, Ivandic T. Low-level laser therapy improves visual acuity in adolescent and adult patients with amblyopia. Photomed Laser Surg. 2012;30(3):167-171. doi:10.1089/pho.2011.3089

27.Geneva II. Photobiomodulation for the treatment of retinal diseases: a review. Int J Ophthalmol. 2016;9(1):145-152.

28.Wang JC, Lim L. Unusual morphology in orthokeratology contact lens-related cornea ulcer. Eye Contact Lens. 2003;29(3):190-192. doi:10.1097/01.ICL.0000075011.87891.39

29.Gispets J, Yébana P, Lupón N, et al. . Efficacy, predictability and safety of long-term orthokeratology: an 18-year follow-up study. Cont Lens Anterior Eye. 2022;45(1):101530. doi:10.1016/j.clae.2021.101530

30.Liu YM, Xie P. The safety of orthokeratology–a systematic review. Eye Contact Lens. 2016;42(1):35-42. doi:10.1097/ICL.0000000000000219

31.Van Meter WS, Musch DC, Jacobs DS, Kaufman SC, Reinhart WJ, Udell IJ; American Academy of Ophthalmology . Safety of overnight orthokeratology for myopia: a report by the American Academy of Ophthalmology. Ophthalmology. 2008;115(12):2301-2313.e1. doi:10.1016/j.ophtha.2008.06.034

32.Xie J, Ye L, Chen Q, et al. . Choroidal thickness and its association with age, axial length, and refractive error in chinese adults. Invest Ophthalmol Vis Sci. 2022;63(2):34. doi:10.1167/iovs.63.2.34

33.Flores-Moreno I, Lugo F, Duker JS, Ruiz-Moreno JM. The relationship between axial length and choroidal thickness in eyes with high myopia. Am J Ophthalmol. 2013;155(2):314-319.e1. doi:10.1016/j.ajo.2012.07.015

34.Lee SS, Alonso-Caneiro D, Lingham G, et al. . Choroidal thickening during young adulthood and baseline choroidal thickness predicts refractive error change. Invest Ophthalmol Vis Sci. 2022;63(5):34. doi:10.1167/iovs.63.5.34

35.Read SA, Collins MJ, Vincent SJ, Alonso-Caneiro D. Choroidal thickness in myopic and nonmyopic children assessed with enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(12):7578-7586. doi:10.1167/iovs.13-12772

36.Lau JK, Wan K, Cheung SW, Vincent SJ, Cho P. Weekly changes in axial length and choroidal thickness in children during and following orthokeratology treatment with different compression factors. Transl Vis Sci Technol. 2019;8(4):9. doi:10.1167/tvst.8.4.9

37.Ho MC, Hsieh YT, Shen EP, Hsu WC, Cheng HC. Short-term refractive and ocular parameter changes after topical atropine. Taiwan J Ophthalmol. 2019;10(2):111-115.

38.Chua WH, Balakrishnan V, Chan YH, et al. . Atropine for the treatment of childhood myopia. Ophthalmology. 2006;113(12):2285-2291. doi:10.1016/j.ophtha.2006.05.062

39.Wang A, Yang C, Shen L, Wang J, Zhang Z, Yang W. Axial length shortening after orthokeratology and its relationship with myopic control. BMC Ophthalmol. 2022;22(1):243. doi:10.1186/s12886-022-02461-4

40.Wei WB, Xu L, Jonas JB, et al. . Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology. 2013;120(1):175-180. doi:10.1016/j.ophtha.2012.07.048

41.Zhang S, Zhang G, Zhou X, et al. . Changes in choroidal thickness and choroidal blood perfusion in guinea pig myopia. Invest Ophthalmol Vis Sci. 2019;60(8):3074-3083. doi:10.1167/iovs.18-26397

42.Pan M, Guan Z, Reinach PS, et al. . PPARγ modulates refractive development and form deprivation myopia in guinea pigs. Exp Eye Res. 2021;202:108332. doi:10.1016/j.exer.2020.108332

43.Xiong S, He X, Zhang B, et al. . Changes in choroidal thickness varied by age and refraction in children and adolescents: a 1-year longitudinal study. Am J Ophthalmol. 2020;213:46-56. doi:10.1016/j.ajo.2020.01.003

44.Tong L, Cui D, Zeng J. Topical bendazol inhibits experimental myopia progression and decreases the ocular accumulation of HIF-1α protein in young rabbits. Ophthalmic Physiol Opt. 2020;40(5):567-576. doi:10.1111/opo.12717

45.Wu H, Chen W, Zhao F, et al. . Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci U S A. 2018;115(30):E7091-E7100. doi:10.1073/pnas.1721443115

46.Zhao F, Zhang D, Zhou Q, et al. . Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis. EBioMedicine. 2020;57:102878. doi:10.1016/j.ebiom.2020.102878

47.Wang W, Zhang F, Yu S, et al. . Prevention of myopia shift and myopia onset using 0.01% atropine in premyopic children—a prospective, randomized, double-masked, and crossover trial. Eur J Pediatr. 2023;182(6):2597-2606. doi:10.1007/s00431-023-04921-5

48.Yam JC, Zhang XJ, Zhang Y, et al. . Effect of low-concentration atropine eyedrops vs placebo on myopia incidence in children: the LAMP2 randomized clinical trial. JAMA. 2023;329(6):472-481. doi:10.1001/jama.2022.24162

49.He X, Wang J, Zhu Z, et al. . Effect of repeated low-level red light on myopia prevention among children in china with premyopia: a randomized clinical trial. JAMA Netw Open. 2023;6(4):e239612. doi:10.1001/jamanetworkopen.2023.9612



本视频/资讯/文章的内容不能以任何方式取代专业的医疗指导,也不应被视为诊疗建议。医脉通是专业的在线医生平台,“感知世界医学脉搏,助力中国临床决策”是平台的使命。医脉通旗下拥有「临床指南」「用药参考」「医学文献王」「医知源」「e研通」「e脉播」等系列产品,全面满足医学工作者临床决策、获取新知及提升科研效率等方面的需求。

点击「阅读原文」查看原文~

医脉通眼科频道
关注医脉通眼科频道,快速获取眼科资讯,病例、指南、资源等随时学习。
 最新文章