致思
子曰:“於斯致思,无所不至。”《笔墨之林·致思篇》作为本公众号推出的新栏目,将进一步聚焦能源与可持续发展领域,每期围绕一个研究主题,撷取近期发表在UTD24与FT50期刊的相关研究,追踪学术热点,把握研究动态。
本期主题:人工智能的应用与影响
人工智能(Artificial Intelligence, AI)是通过利用自然语言处理、计算机视觉、语音识别等多种机器学习技术构建的能够模拟人类智能的系统。近年来,AI技术迅速发展,深刻改变了多个行业的运作方式并对经济和社会产生了深远影响,成为经济学和管理学研究的前沿领域。一方面,AI技术在研究中的应用日益广泛,图像识别、复杂文本处理、大语言模型等相关技术显著提升了数据分析和模型预测能力;另一方面,AI本身也成为备受关注的研究焦点,其对经济增长、劳动力市场变革、个人决策、企业发展、创新创业等多方面的影响受到广泛关注。
本期推荐的九篇文章展示了AI在灾害响应、个人决策和企业决策等多个领域的应用与影响。在灾害响应方面,气候变化加剧导致自然灾害频发,AI能够更精准地识别社交媒体上发布的灾害相关图像,提升应急响应效率,并为灾后经济援助提供支持,如帮助贷款机构更好地为受灾者提供财务援助。
在个人决策方面,AI技术被用于评估环境因素 (如室内空气质量恶化) 对人类决策的影响,提升关于环境对个人决策作用的理解;同时,AI技术还可用于纠正法官在审前保释判断上的系统预测偏误;此外,健康保险领域的AI技术相关应用 (如数字专家建议工具) 能够为消费者提供更多产品信息,并改变了其对产品特征的重视程度,从而有效地影响了消费者的选择。
在企业决策方面,AI影响了企业的创立和发展。大学教授离职影响学生AI知识水平,减少了AI企业的创办数量; 而使用AI技术的公司可以通过产品创新实现更高的销售额、就业率和市场估值。最后,AI在提升财务报告质量和学习会计准则方面的潜力也值得关注,未来可能带来会计、审计行业的颠覆性变革。
识别观察数据中的预测错误 (QJE)
室内空气质量与战略决策 (MS)
推动应急响应:利用机器学习对社交媒体上发布的灾害相关图像进行分类 (JMIS)
智能自然灾害救助:利用人工智能贷款帮助灾民 (ISR)
消费者如何与数字专家建议互动?来自健康保险的实验证据 (MS)
人工智能、教育和创业 (JF)
人工智能、企业成长和产品创新 (JFE)
自动化能改善财务报告吗?来自内部控制的证据 (RAS)
都是炒作吗?ChatGPT在会计审计行业中的表现和颠覆性潜力 (RAS)
摘要:Decision makers, such as doctors, judges, and managers, make consequential choices based on predictions of unknown outcomes. Do these decision makers make systematic prediction mistakes based on the available information? If so, in what ways are their predictions systematically biased? In this article, I characterize conditions under which systematic prediction mistakes can be identified in empirical settings such as hiring, medical diagnosis, and pretrial release. I derive a statistical test for whether the decision maker makes systematic prediction mistakes under these assumptions and provide methods for estimating the ways the decision maker’s predictions are systematically biased. I analyze the pretrial release decisions of judges in New York City, estimating that at least 20% of judges make systematic prediction mistakes about misconduct risk given defendant characteristics. Motivated by this analysis, I estimate the effects of replacing judges with algorithmic decision rules and find that replacing judges with algorithms where systematic prediction mistakes occur dominates the status quo.
决策者,如医生、法官和经理,会基于对未知结果的预测做出重大选择。这些决策者是否基于现有信息做出系统性的预测错误? 如果是,他们的预测在哪些方面存在系统性偏差?本文描述了在雇佣、医疗诊断和审前释放等实证环境中识别决策者系统性预测错误的条件。我推导出一个统计测试,用于判断决策者是否在这些假设下做出系统性预测错误,并提供估计决策者预测偏差的方法。我分析了纽约市法官的审前释放决定,估计至少有20%的法官对被告特征相关的不当行为风险做出系统性预测错误。在此分析的推动下,我估计了用算法决策规则取代法官的效果,并发现在出现系统性预测错误的地方用算法取代法官优于现状。
https://doi.org/10.1093/qje/qjae013
点击链接查看往期【笔墨之林】QJE: 法官会被AI取代吗?—— 可观测数据的预测偏误识别
作者:Steffen Künn; Juan Palacios; Nico Pestel
摘要:Decision making on the job is becoming increasingly important in the labor market, in which there is an unprecedented rise in demand for workers with problem-solving and critical-thinking skills. This paper investigates how indoor air quality affects the quality of strategic decision making based on data from official chess tournaments. Our main analysis relies on a unique data set linking the readings of air-quality monitors inside the tournament room to the quality of 30,000 moves, each of them objectively evaluated by a powerful artificial intelligence–based chess engine. The results show that poor indoor air quality hampers players’ decision making. We find that an increase in the indoor concentration of fine particulate matter (PM2.5) by 10 μg/m3 (corresponding to 75% of a standard deviation in our sample) increases a player’s probability of making an erroneous move by 26.3%. The decomposition of the effects by different stages of the game shows that time pressure amplifies the damage of poor air quality to the players’ decisions. We implement a number of robustness checks and conduct a replication exercise with analogous move-quality data from games in the top national league showing the strength of our results. The results highlight the costs of poor air quality for highly skilled professionals faced with strategic decisions under time pressure.
工作中的决策在劳动力市场中变得越来越重要,市场对具有解决问题和批判性思维能力的工人的需求空前增加。本文基于官方国际象棋锦标赛的数据,研究了室内空气质量如何影响战略决策的质量。我们的主要分析依赖于一个独特的数据集,该数据集将锦标赛室内空气质量监测器的读数与30,000步棋的质量联系起来,其中每一步都由强大的人工智能国际象棋引擎进行客观评估。研究结果表明,室内空气质量差会妨碍棋手的决策。具体而言,室内细颗粒物 (PM2.5) 增加10微克/立方米 (相当于我们样本中一个标准差的75%) 会使玩家做出错误动作的概率增加26.3%。游戏不同阶段的影响分解结果显示,时间压力放大了恶劣空气质量对玩家决策的影响。我们进行了多项稳健性检验,并使用来自顶级国家联赛的类似动作质量数据进行了相似分析,均证实了我们的发现具有广泛的适用性。这些结果突出了在时间压力下,恶劣空气质量对高技能专业人士在战略决策的危害。
原文:Künn, S., Palacios, J., & Pestel, N. (2023). Indoor air quality and strategic decision making. Management Science, 69(9), 5354-5377.
https://doi.org/10.1287/mnsc.2022.4643
摘要:Social media platforms are increasingly used during disasters. In the United States, users often consider these platforms to be reliable news sources and they believe first responders will see what they publicly post. While having ways to request help during disasters might save lives, this information is difficult to find because non-relevant content on social media completely overshadows content reflective of who needs help. To resolve this issue, we develop a framework for classifying hurricane-related images that have been human-annotated. Our approach uses transfer learning and classifies each image using the VGG-16 convolutional neural network and multi-layer perceptron classifiers according to the urgency, relevance, and time period, in addition to the presence of damage and relief motifs. We find that our framework not only successfully functions as an accurate method for hurricane-related image classification but also that real-time classification of social media images using a small training set is possible.
社交媒体平台在灾难期间的使用日益增加。在美国,许多用户将这些平台视为可靠的新闻来源,并相信急救人员会看到他们公开发布的内容。虽然在灾难期间通过社交媒体寻求帮助有可能挽救生命,但由于不相关的内容大量涌现,这些求助信息难以被及时发现。为了解决这个问题,我们开发了一个框架,用于对人工注释的飓风相关图像进行分类。该方法使用迁移学习,并使用VGG-16卷积神经网络和多层感知器分类器,根据紧急程度、相关性、时间段以及损坏与救援模式的出现对每幅图像进行分类。研究结果表明,我们的框架不仅可以成功地作为一种精确的飓风相关图像分类工具,而且能够在实时环境中使用小型训练集对社交媒体图像进行分类。
https://doi.org/10.1080/07421222.2023.2172778
摘要:Natural disasters wreak economic havoc and cause financial distress for victims. Commercial loans provided by lending firms play a key role in helping victims recover from disasters. This research note studies whether lenders' use of artificial intelligence (AI) in the lending process can, through reducing delinquency, benefit borrowers who experience natural disasters. Collaborating with a leading credit-scoring company, we track borrowers' loan applications and lenders' use of customized AI solutions in assessing loan risks. We find that borrowers who apply to AI-empowered lenders fare better in reducing delinquency rates after experiencing natural disasters. Notably, such a disaster mitigation effect is more pronounced for borrowers with lower credit scores. We explore the possible mechanisms at play and discuss the implications of our findings.
自然灾害不仅会对经济造成破坏,还可能使灾民陷入财务困境。商业贷款公司提供的商业贷款在帮助灾民从灾难中恢复方面发挥着关键作用。本研究报告研究了贷款机构在贷款过程中使用人工智能 (AI) 是否可以通过减少拖欠率来帮助遭遇自然灾害的借款人。我们与一家领先的信用评分公司合作,跟踪借款人的贷款申请,并研究了贷款机构在评估贷款风险时使用定制AI解决方案的情况。我们发现,在遭遇自然灾害后,使用人工智能的贷款机构所批准的贷款申请,能够显著降低借款人的拖欠率。值得注意的是,这种灾害缓解效应对于信用评分较低的借款人来说更为明显。我们进一步探讨了其中可能起作用的机制,并讨论了研究结果的含义。
https://doi.org/10.1287/isre.2023.1230
摘要:Consumers increasingly use digital advice when making purchasing decisions. How do such tools change consumer behavior and what types of consumers are likely to use them? We examine these questions with a randomized controlled trial of digital expert advice in the context of prescription drug insurance. The intervention we study was effective at changing consumer choices. We propose that, conceptually, expert advice can affect consumer choices through two distinct channels: by updating consumer beliefs about product features (learning) and by influencing how much consumers value product features (interpretation). Using our trial data to estimate a model of consumer demand, we find that both channels are quantitatively important. Digital expert advice tools not only provide consumers with information, but also alter how consumers value product features. For example, consumers are willing to pay 14% less for a plan with the most popular brand and 37% less for an extra star rating when they incorporate digital expert advice on plan choice relative to only having information about product features. Further, we document substantial selection into the use of digital advice on two margins. Consumers who are inherently less active shoppers and those who we predict would have responded to advice more were less likely to demand it. Our results raise concerns regarding the ability of digital advice to alter consumer preferences as well as the distributional implications of greater access to digital expert advice.
消费者在做出购买决策时,越来越依赖数字化建议工具。然而,这些工具如何改变消费者行为,以及哪些类型的消费者更可能使用它们,尚不清楚。我们通过在处方药保险的背景下进行随机对照试验来研究这些问题。研究结果表明,干预措施有效地改变了消费者的选择。我们提出,专家建议从概念上讲可以通过两个不同的渠道影响消费者选择:一是通过更新消费者对产品特征的信念 (学习),二是通过影响消费者对产品特征的重视程度 (解释)。利用试验数据,我们估计了消费者需求模型,发现这两个渠道在数量上都对消费者行为产生了显著影响。具体而言,数字专家建议工具不仅提供了信息,还改变了消费者对产品特征的重视程度。例如,相较于仅有关于产品特征的信息的情况下,消费者在结合数字专家建议进行选择时,愿意为最受欢迎品牌的计划支付少14%,而对于额外星级评分的计划,则愿意支付少37%。此外,我们还发现,消费者在使用数字建议方面存在显著的选择偏好。天生不太活跃的购物者,以及更可能对建议做出反应的消费者,实际上更不可能选择这种建议。我们的结果引发了对数字建议在改变消费者偏好能力,及其对更广泛获取数字专家建议的分配效应的担忧。
https://doi.org/10.1287/mnsc.2020.02453
题目:Artificial intelligence, education, and entrepreneurship (人工智能、教育和创业)
作者:Michael Gofman; Zhao Jin
摘要:We document an unprecedented brain drain of Artificial Intelligence (AI) professors from universities from 2004 to 2018. We find that students from the affected universities establish fewer AI startups and raise less funding. The brain‐drain effect is significant for tenured professors, professors from top universities, and deep‐learning professors. Additional evidence suggests that unobserved city‐ and university‐level shocks are unlikely to drive our results. We consider several economic channels for the findings. The most consistent explanation is that professors' departures reduce startup founders' AI knowledge, which we find is an important factor for successful startup formation and fundraising.
我们记录了 2004 年至 2018 年期间,大学人工智能 (AI) 教授前所未有的人才流失现象。研究发现,受影响大学的学生创办的AI初创企业数量显著减少,且这些初创企业筹集的资金也显著降低。人才流失效应在终身教授、顶尖大学教授和深度学习领域的教授中尤为显著。进一步分析表明,未观察到的城市和大学层面的冲击不太可能解释我们的结果。我们考虑了研究结果的几个经济渠道。其中最一致的解释是,教授的离职导致了AI知识的流失,进而影响了初创公司的成功创立和筹集资金。
https://doi.org/10.1111/jofi.13302
题目:Artificial intelligence, firm growth, and product innovation (人工智能、企业成长和产品创新)
作者:Tania Babina; Anastassia Fedyk; Alex He; James Hodson
摘要:We study the use and economic impact of AI technologies. We propose a new measure of firm-level AI investments using employee resumes. Our measure reveals a stark increase in AI investments across sectors. AI-investing firms experience higher growth in sales, employment, and market valuations. This growth comes primarily through increased product innovation. Our results are robust to instrumenting AI investments using firms' exposure to universities' supply of AI graduates. AI-powered growth concentrates among larger firms and is associated with higher industry concentration. Our results highlight that new technologies like AI can contribute to growth and superstar firms through product innovation.
我们研究人工智能技术的使用及其对经济的影响。我们提出了一种新方法,通过分析员工简历来衡量公司层面的人工智能投资。我们的衡量标准表明,各个行业的人工智能投资都大幅增加。人工智能投资公司的销售额、就业率和市场估值都经历了更高的增长,而这种增长主要来自于产品创新的增加。研究结果表明,使用公司对大学人工智能毕业生供应的敞口作为衡量人工智能投资是可靠的。进一步分析显示,人工智能驱动的增长集中在较大的公司中,并且与更高的行业集中度相关。我们的研究结果表明,人工智能等新技术可以通过产品创新促进增长和形成超级明星公司。
https://doi.org/10.1016/j.jfineco.2023.103745
题目:Does automation improve financial reporting? Evidence from internal controls (自动化能改善财务报告吗?内部控制的证据)
作者:Musaib Ashraf
摘要:Automation—such as machine learning, robotic process automation, and artificial intelligence—is the next major technological leap in accounting and financial reporting, and I empirically study whether public firms’ use of automation technology improves their financial reporting, specifically focusing on the internal control environment. I document two critical inferences. First, I find evidence which suggests that automation improves financial reporting quality. Specifically, firms’ use of automation in the financial reporting process is associated with a reduction in internal control material weaknesses. This association is consistent in a levels analysis with firm and year fixed effects, in a changes analysis, and in a propensity score matched difference-in-differences analysis. Second, I find evidence which suggests that monitoring of the financial reporting process decreases after automation, likely because of a perception that automation reduces the need for monitoring vis-à-vis stronger internal controls. Specifically, automation is associated with higher external audit fees and audit committee meetings in the initial years after a firm implements automation but associated with lower external audit fees and audit committee meetings in subsequent years. I also find evidence which suggests that this decreased monitoring may be costly: when internal control failures do happen for firms with automation, the failures are more material, as proxied by stronger negative market reactions. In aggregate, my evidence provides nuanced insights regarding whether automation technology improves financial reporting.
自动化 (例如机器学习、机器人流程自动化和人工智能) 被视为会计和财务报告的下一个重大技术飞跃。我通过实证研究上市公司是否通过采用自动化技术来改善其财务报告,尤其关注内部控制环境。研究得到了两个关键推论。首先,自动化可以提高财务报告质量。具体而言,公司在财务报告过程中使用自动化与内部控制重大缺陷的减少有关。这种关联在公司和年份固定效应的水平分析、变化分析和倾向得分匹配的差异分析中都得到了验证。其次,在自动化实施之后,对财务报告流程的监控有所减少,这可能是因为人们认为自动化减少了对监控的需求,而内部控制则得到了加强。具体来说,在公司实施自动化后的最初几年,自动化与更高的外部审计费用和审计委员会会议次数有关,但在随后的几年中,与更低的外部审计费用和审计委员会会议次数有关。然而,这种监控的减少可能会付出高昂代价:当采用自动化的公司确实出现内部控制失效时,失效的严重性会被放大,通常表现为更显著的负面市场反应。总的来说,研究结果为关于自动化技术是否能改善财务报告提供了细致见解。
https://doi.org/10.1007/s11142-024-09822-y
题目:Is it all hype? ChatGPT’s performance and disruptive potential in the accounting and auditing industries (都是炒作吗?ChatGPT在会计审计行业中的表现和颠覆性潜力)
作者:Marc Eulerich; Aida Sanatizadeh; Hamid Vakilzadeh; David A. Wood
摘要:ChatGPT frequently appears in the media, with many predicting significant disruptions, especially in the fields of accounting and auditing. Yet research has demonstrated relatively poor performance of ChatGPT on student assessment questions. We extend this research to examine whether more recent ChatGPT models and capabilities can pass major accounting certification exams including the Certified Public Accountant (CPA), Certified Management Accountant (CMA), Certified Internal Auditor (CIA), and Enrolled Agent (EA) certification exams. We find that the ChatGPT 3.5 model cannot pass any exam (average score across all assessments of 53.1%). However, with additional enhancements, ChatGPT can pass all sections of each tested exam: moving to the ChatGPT 4 model improved scores by an average of 16.5%, providing 10-shot training improved scores an additional 6.6%, and allowing the model to use reasoning and acting (e.g., allow ChatGPT to use a calculator and other resources) improved scores an additional 8.9%. After all these improvements, ChatGPT passed all exams with an average score of 85.1%. This high performance indicates that ChatGPT has sufficient capabilities to disrupt the accounting and auditing industries, which we discuss in detail. This research provides practical insights for accounting professionals, investors, and stakeholders on how to adapt and mitigate the potential harms of this technology in accounting and auditing firms.
ChatGPT频繁出现在媒体上,许多人预测它会给多个行业带来重大颠覆,尤其是在会计和审计领域。然而,现有研究表明,ChatGPT在学生评估任务中的表现相对较差。我们扩展了这项研究,以检验较新的ChatGPT模型和功能是否可以通过主要的会计认证考试,包括注册会计师 (CPA)、注册管理会计师 (CMA)、注册内部审计师 (CIA) 和注册代理人 (EA) 认证考试。研究结果表明,ChatGPT 3.5模型无法通过任何考试,所有评估的平均分数为53.1%。然而,随着模型功能对增强,ChatGPT可以通过所有考试的各个部分: 当迁移到 ChatGPT 4模型后,考试分数平均提高了16.5%;经过10次训练后,分数又提高了6.6%; 当允许模型使用推理和表演 (例如,允许ChatGPT使用计算器和其他资源) 后,分数又提高了8.9%。经过所有这些改进后,ChatGPT以85.1%的平均分通过了所有考试。这一优异表现表明,ChatGPT具有足够的能力对会计和审计行业带来颠覆性变化。这项研究为会计专业人士、投资者和利益相关者提供了实用见解,帮助他们了解如何适应和减轻这项技术在会计和审计公司中的风险与挑战。
https://doi.org/10.1007/s11142-024-09833-9
主题征集
承前致思,同行致远。我们诚邀您通过评论、留言或邮件等方式与我们分享您感兴趣的话题。我们将从读者反馈中挑选后续推文的主题,共探能源环境可持续发展学术前沿。
阅读原文,访问E3M主页获取更多
欢迎推荐转发,转载请注明出处
关于我们
香港城市大学能源经济与环境管理研究室(The Laboratory of Energy Economics and Environmental Management,E3M)成立于2017年,是香港地区第一个致力于能源和环境问题经济分析的研究室,探讨了经济、能源和环境之间的相互作用,为全球变化时代下的经济发展制定可持续的智能增长框架铺平道路。
更多信息请见E3M主页:
https://www.cityu.edu.hk/see_eeem
作者:唐 瑶,香港城市大学博士生
主编:董涵敏,华中师范大学 讲师
责编:郝新亚,香港城市大学博士生
相关推文:
【学术交流】第8期E3M Seminar暨NSFC-RGC联合项目启动会顺利举行
【学术交流】E3M团队赴土耳其参加国际能源经济学会国际年会(IAEE2024)
张林教授获批2024基础研究专项(深圳市自然科学基金)面上项目
香港城市大学张林教授团队——中山大学王茹婷获选2024年“香江学者计划”
香港城市大学张林、中国人民大学周文戟获批NSFC-RGC联合科研基金项目
香港城市大学张林、德国亚琛工业大学Aaron Praktiknjo获批RGC-DAAD联合科研基金项目
【笔墨之林】JEEM:高温逐客令 —— 极端天气导致驱逐租客增加?
【笔墨之林】NBER: 远虑与近忧 —— 全球变暖将对全球经济增长造成多大影响?
《The Energy Journal》Volume 45 Issue 4——文献导读
《The Energy Journal》2024年5月——文献导读
《The Energy Journal》2024年3月——文献导读
【E3M研究分享】JBR:政府客户与企业环境责任——来自中国的证据
【E3M研究分享】最新双重差分命令(LPDID),异质性处理效应!
【E3M研究分享】iScience:碳中和预警——公平准则下需同时提防碳泄漏
【E3M研究分享】03 关于效率Efficiency:收敛分析方法汇总
【E3M研究分享】02 关于效率Efficiency:效率和DEA方法
微信号:能源与可持续发展经济学
(点击识别下方二维码关注我们)
文章推荐/投稿/合作联系方式
📧xyhao5-c@my.cityu.edu.hk