研究背景
有机无机金属卤化物钙钛矿太阳能电池效率在短短 15 年内从 3.8% 迅速增长到 26.7%,引起光伏界的广泛关注。然而,由于有机阳离子和金属卤化物框架之间的氢键脆弱,这些有机无机杂化太阳能电池在热应力和光应力下的长期运行稳定性较差。
无机铯 (Cs) 阳离子代替挥发性的有机阳离子,显著增强了阳离子和金属卤化物框架之间的离子相互作用,从而提高了太阳能电池的光稳定性和热稳定性。但这些基于 Cs 的全无机钙钛矿在室温下往往会自发从光活性 α 相转变为非钙钛矿 δ 相,从而显著降低其光电性能。
CsPbI₃ 的相稳定问题研究已经相对成熟,而锡基 CsSnI₃ 类似物的相不稳定问题尚未得到充分解决。这篇文章重点总结了 CsPbI₃ 相稳定的策略和经验,以及在 CsSnI₃ 相稳定问题的应用可能性,为无铅光伏长期稳定性提供科学依据。
研究内容
近日,西北工业大学王松灿教授和昆士兰大学陈鹏博士论述了 CsPbI₃ 和 CsSnI₃ 的相稳定问题的最新研究进展,重点剖析了制备工艺、元素掺杂、界面工程、添加剂工程在 CsPbI₃ 相稳定问题的成功应用及机理探究,并讨论以上经验在 CsSnI₃ 相稳定问题上的应用可能性,为解决 CsSnI₃ 相稳定问题提供理论依据。
Figure 1. (a) The PCE evolution history of all-inorganic PSCs. (b) Shockley-Queisser limits of perovskites with different compositions (currently highest efficiency achieved marked with stars).
Figure 2. Schematic illustration of organic-inorganic perovskites MABX₃ (a) and FABX₃ (b) (B = Pb/Sn, X = Br/I or mixed halides) degradation processes under illumination and thermal stress.27 (c) TG-DTA traces (upper panel, dark green and blue color, respectively) during the thermal degradation (heating rate of 20 °C min-1) of CH₃NH₃PbI₃. Reproduced with permission. 27 Copyright 2016, Elsevier. (d) TGA and DSC data for MASnI3 (red line) and FASnI₃ (black line). Reproduced with permission.29 Copyright 2016, Wiley-VCH. (e-g) Evolution of XRD patterns of MASnI3, FASnI3, and CsSnI3 under thermal annealing at ~90 ℃ in dark. Reproduced with permission. 30 Copyright 2021, Royal Society of Chemistry.
Figure 3. (a) Illustration of crystal structure and phase transition of CsPbI₃ and CsSnI₃ polymorphs. (Orange arrow represents CsSnI3, green arrow is CsPbI₃.) Reproduced with permission.37 Copyright 2012, American Chemical Society. In situ temperature-dependent synchrotron XRD patterns of black CsSnI₃ (b) and CsPbI₃ (c) on heating. Reproduced with permission.37, 38 Copyright 2015, American Chemical Society. Frost diagrams for (d) Pb and (e) Sn in standard conditions. Reproduced with permission. 39 Copyright 2021, American Chemical Society.
Figure 4. (a) Schematic diagram of TG (conventional method) and SF deposited perovskite thin films. Reproduced with permission.41 Copyright 2022, Wiley-VCH. (b) Perovskite thin films with different treatment schemes. Reproduced with permission.43 Copyright 2020, Wiley-VCH. (c) Photographs of control samples and TSSG CsPbI2Br films annealed at 200 °C and then stored in ambient air for periods ranging from 0 to 9 h.44 Copyright 2021, American Chemical Society. (d) Schematic diagram of the MAS strategy and (e) Absorption spectra of encapsulated CsPbI₃ films prepared on the basis of MAS and stability photographs of the films stored at 70%-90% RH for 60 days. Reproduced with permission.49 Copyright 2020, American Chemical Society.
Figure 5. (a) Schematic diagram of K+ doping and (b) Gaussian fitting curves for (100) peaks for Cs1−xKxPbI2Br films. Reproduced with permission.53 Copyright 2017, American Chemical Society. (c) Schematic crystal structure of CsPbI2Br based on different ion doping and the stability of InCl3:CsPbI2Br at 85 °C under ambient air conditions of 65-75% RH.55 Reproduced with permission. Copyright 2021, American Chemical Society. Doped 30% CaMn film with (d) diffraction figure and (e) stability test at 40-60% RH.61 Reproduced with permission. Copyright 2022, American Chemical Society. (f) GIWAXS-based investigation of the role of halide elements in the crystallization and phase transition of fully inorganic perovskite.62 Reproduced with permission. Copyright 2020, Elsevier. (g) XRD spectra and (h) photovoltaic parameters at room temperature and 20% RH of CsPbBrI2−xFx films.65 Reproduced with permission. Copyright 2018, The Royal Society of Chemistry.
Figure 6. (a) Schematic diagram of perovskite growth on SnO2 and SnO2-SnS2 substrates. Reproduced with permission.68 Copyright 2022, Elsevier. (b) OTG-based perovskite devices with the phase stabilization mechanism. Reproduced with permission.70 Copyright 2019, Wiley-VCH. (c) Charge density diagram and (d) migration energy figure of FAI-passivated perovskite surface. Reproduced with permission.71 Copyright 2022, Elsevier. (e) XRD pattern and (f) UV-vis spectra of pristine-CsPbI3 and PPDI-CsPbI3 aged 30 d. Reproduced with permission.73 Copyright 2019, American Chemical Society. (g) Schematic diagram of the working mechanism by EMIMHSO4 and (h) XRD pattern based on CsPbI3, CsPbI3-EMIMBF4 and CsPbI3-EMIMHSO4 perovskite thin films kept at 35 ± 5% RH, 80 °C for 24 h. Reproduced with permission.82 Copyright 2022, Wiley-VCH. (i) XRD patterns of Ref and EAL-CsPbI3 target films. Reproduced with permission.83 Copyright 2024, Wiley-VCH.
Figure 7. (a) Color map showing the relative free energy between γ- and δ-phases with MA and Br mixing, ΔΔF (= ΔFf(γ) – ΔFf(δ)). The phase transition line is the line satisfying ΔΔF = 0 (black solid line). Reproduced with permission.92 Copyright 2021, Royal Society of Chemistry. (b) 13C NMR spectra of pristine CPT, SnI2-CPT, and CsI-SnI2-CPT samples in DMSO-d6 solution. Reproduced with permission.93 Copyright 2022, Royal Society of Chemistry. (c) Absorbance spectrum of CsSnI3 + 10% SnCl2 films. Reproduced with permission.94 Copyright 2016, Nature Springer. (d) Charge density of perovskite film surface with antisite SnI defects and passivated by DMKO.95 (e) Proposed possible mechanism of hydrazine vapor reaction with Sn-based perovskite materials. Reduction process: 2SnI62- + N2H4 → 2SnI42- + N2 + 4HI. Reproduced with permission.96 Copyright 2017, American Chemistry Society. (f) Schematic representation of the two-step temperature annealing process of B-γ-CsSnI3 thin films. Reproduced with permission.93 Copyright 2022, American Chemistry Society.
论文信息
Toward durable all-inorganic perovskite solar cells: from lead-based to lead-free
Hongzhe Xu†, Zhaochen Guo†, Peng Chen* and Songcan Wang*
Chem. Commun., 2024, 60, 12287-12301
https://doi.org/10.1039/D4CC04000G
相关期刊
rsc.li/chemcomm
Chem. Commun.
2-年影响因子* | 4.3分 |
5-年影响因子* | 4.4分 |
JCR 分区* | Q2 化学-多学科 |
CiteScore 分† | 8.6分 |
中位一审周期‡ | 23 天 |
ChemComm (Chemical Communications) 报道来自世界各地的化学研究新进展,涵盖化学中的各个领域,包括但不限于分析化学、生物材料化学、生物有机/药物化学、催化、化学生物学、配位化学、晶体工程、能源、可持续化学、绿色化学、无机化学、无机材料、主族化学、纳米科学、有机化学、有机材料、金属有机、物理化学、超分子化学、合成方法学、理论和计算化学等。作为英国皇家化学会论文总被引次数最高的老牌期刊,ChemComm 拥有悠久的历史,对论文质量、期刊口碑以及审稿的公平性有着长期的坚持。作为一本发表通讯为主的期刊,ChemComm 从投稿到发表的速度一直是业内领先。
Douglas Stephan
🇨🇦 多伦多大学
|
|
* 2023 Journal Citation Reports (Clarivate, 2024)
† CiteScore 2023 by Elsevier
‡ 中位数,仅统计进入同行评审阶段的稿件
📧 RSCChina@rsc.org