研究背景
石墨烯-硅异质集成的新概念有望在集成光子电路中实现有效的光调制。然而,在硅基石墨烯调制器的研究中,寻求在效率和速度方面取得重大进展的解决方案仍然是一个非常有趣和重要的话题。同时实现低功耗和紧凑的器件尺寸对于实现适合高速光互连和计算的紧密封装、节能光子电路至关重要。
研究内容
Fig.1 Gold-assisted transfer method. The process begins with depositing Au supporting layer on commercial SLG sample grown on copper foil. Then the copper substrate is completely etched by placing it in ammonium persulfate solution for 4 hours. Once the copper etching is complete, the Au-SLG film is transferred in a beaker with DI water and then lifted by the target substrate. When completely dry, the excess Au and graphene films is removed using aqueous acid solution and oxygen plasma etching, respectively.
Fig.2 The graphene TO modulator. a, 3D illustration of the graphene TO micro-ring modulator. b, Cross-section of the device. The white dashed line shows the graphene sheets. c, Waveguide TE-mode profile distribution simulated by finite-different time-domain simulation. d, Temperature rise distribution across the x-y plane for ~1 mW power dissipated in the proposed device. e, Si waveguide transient temperature rise at the point indicated with the red arrow. f, Optical microscope image of the device. Scale bar, 40 μm. g, False-color SEM image of the device. Scale bar, 20 μm.
Fig.3 Electro-optic response of the graphene TO modulator. a, Transmission spectra (colors) for various applied bias voltages (0-5 V). Inset shows the change in the effective refractive index in active area as a function of the bias voltages. b, Wavelength shift of the resonance peaks as a function of the input electrical power to graphene. c, Temperature change in the silicon resonator as a function of the input power to graphene. d, Normalized output intensity from the through port at a rectangular bias signal (1.85−2.15 V) at 50 kHz to graphene.
Fig.4 The graphene EA modulator. a, 3D illustration of the graphene EA modulator. b, Optical microscope image of the device. Scale bar, 100 μm. c, Cross-section of the device. The black dashed line shows the graphene sheets. d, Waveguide TE-mode profile distribution. e, Corresponding transmission at 1550 nm as a function of applied bias voltages. f, Measured electro-optical S21 frequency response of the EA modulator when the bias voltage is 3 V. g-i, NRZ eye diagrams generated at data rates of 40, 48, 56 Gb/s. The white scale bar corresponds to 5 ps.
论文信息
High efficiency graphene–silicon hybrid-integrated thermal and electro-optical modulators
Xiaoxuan Wu, Zhengyi Cao, Tianxiang Zhao, Yun Wu,* Zhonghui Li, Spyros Doukas, Elefterios Lidorikis, Yu Xue, Liu Liu, Omid Ghaebi, Giancarlo Soavi, Junpeng Lu, Zhenhua Ni,* and Junjia Wang*(吴云,中电科55所;倪振华、王俊嘉,东南大学)
Nanoscale Horiz., 2024, 9, 1372–1378
https://doi.org/10.1039/D4NH00160E
作者简介
相关期刊
rsc.li/nanoscale-horizons
Nanoscale Horiz.
2-年影响因子* | 8.0分 |
5-年影响因子* | 8.8分 |
JCR 分区* | Q1 材料-多科学 Q1 纳米科学技术 Q2 化学-物化 |
CiteScore 分† | 16.3分 |
中位一审周期‡ | 41 天 |
Nanoscale Horizons 是纳米科学与技术领域的领导性期刊,发表高质量、高创新性的研究成果。该期刊侧重于原创性研究,强调所发表的论文要提出新的概念或新的思维方式(概念上的进展),而不是以报道技术方面的进展为主。当然,在概念上未有创新但实现了突破性进展的杰出工作(例如材料性能突破已有纪录)也有被发表的机会。另外,该刊要求所发表的论文能引起纳米科学与技术各领域读者的广泛兴趣。该刊由英国皇家化学会同中国国家纳米科学中心共同出版。
Katharina Landfester
🇩🇪 马克斯普朗克聚合物研究所
|
|
Editorial board members
|
|
* 2023 Journal Citation Reports (Clarivate, 2024)
† CiteScore 2023 by Elsevier
‡ 中位数,仅统计进入同行评审阶段的稿件
📧 RSCChina@rsc.org