时间不会停留,随着时间的流逝,衰老也会随之而来。随着年龄的增长,保持肌肉质量对于保持力量、灵活性、预防伤害和整体健康至关重要。
肌肉损失(也称为肌肉减少症)会导致身体机能下降、跌倒风险增加以及代谢健康下降。这就是为什么我们不断关注肌肉保护,这不仅可以支持积极的生活方式,而且有助于我们晚年的长寿和活力。
为健康老龄化提供全面的肌肉支持
胶原蛋白肽 – 5,000 毫克
我们都知道摄入足够的蛋白质非常重要,但你对自己摄入的蛋白质种类有多少了解呢?人体由不少于20 种氨基酸组成,但你如何知道自己摄入了所需的特定氨基酸呢?
这就是补充胶原蛋白可以发挥作用的地方。传统饮食中最重要的蛋白质来源往往是乳制品和肌肉,提供的氨基酸可能不如我们想要的那么完整。服用胶原蛋白有助于平衡它们。
例如,一项临床前研究发现,补充胶原蛋白可显著改善皮肤健康。仔细分析发现,补充胶原蛋白的动物皮肤胶原蛋白含量增加,这是对抗皮肤老化的关键。[1]
骨骼健康是健康老龄化的关键,特别是如果你想在晚年保持活力,而胶原蛋白已被证明可以通过促进成骨细胞(真正负责骨骼生长的细胞)的生长来改善骨骼矿化。 [2]一项针对老龄小鼠的研究发现,补充胶原蛋白实际上可以预防与年龄相关的骨质流失。[3]
在一项针对 35 岁以上女性的随机、双盲、安慰剂对照研究中,服用补充胶原蛋白 3 个月的女性皮肤质量显著改善。与安慰剂组相比,服用胶原蛋白的女性皮肤更光滑、更水润、更有弹性。[4]
甘氨酸和蛋氨酸的相互作用不仅对美容有好处,对身体健康也有好处
虽然胶原蛋白对皮肤非常有益,但我们认为业界对胶原蛋白的讨论往往集中在其美容潜力上,这有点令人遗憾,因为胶原蛋白对代谢健康也有着深远的有益作用。
为了了解其工作原理,我们需要讨论甘氨酸和蛋氨酸之间的相互作用,它们是构成人体组织的 20 种氨基酸中的两种。
信不信由你,你体内的甘氨酸和蛋氨酸的比例会对你的荷尔蒙和心血管健康产生巨大影响。如果蛋氨酸过高,而甘氨酸过低,就会导致皮质醇增加,这是一种压力荷尔蒙,会导致肌肉分解(崩溃)。[5,6]
不过无需担心——胶原蛋白是甘氨酸的极佳来源,研究表明,通过补充胶原蛋白增加甘氨酸的摄入量有助于抑制身体的压力反应。[6]
甘氨酸还能帮助人体排除同型半胱氨酸(一种与不良心血管后果有关的氨基酸),因此有利于心血管健康。 [7,8]
我们认为,在所有年龄段中,很少有人摄入胶原蛋白中所含的氨基酸,如甘氨酸、脯氨酸和羟脯氨酸。毕竟,吃大量软组织、皮肤或去骨肉的人并不多。
因此,在 MyoStim 中添加胶原蛋白是一个很好的开始,可以补充一些真正的抗衰老成分。而且还有更多这样的成分正在研发中。
一水肌酸 – 3,000 毫克
尽管肌酸如今非常受欢迎,但它并不总是被广泛接受。然而,我们现在知道,对于绝大多数健康的青少年和成年人来说,证据一致表明肌酸是安全有效的。[9-11]
虽然大多数健身爱好者可能都尝试过使用肌酸来提高运动表现,但很少有人真正认识到其广泛的健康益处。肌酸补充剂不仅可以提高运动能力和肌肉生长,还可以延伸到人类健康的其他领域。
科学研究证明肌酸具有以下功效:
增强肌肉力量[12,13]
促进体重增加[13]
促进肌肉质量积累[13-17]
提高短跑成绩[18-20]
促进细胞补水[21]
提升能量水平[22-25]
促进整体福祉[25-27]
促进认知功能[28,29]
支持睾酮生成[30-34]
增强骨密度[16]
这些好处对于那些很少吃肉或不吃肉的人来说尤其重要,比如纯素食主义者和素食者,因为肉类是肌酸最丰富的膳食来源。
虽然肌酸的益处令人印象深刻,但它仍然没有完全展现肌酸的作用范围。肌酸通常被称为“基础”补充剂,因为它可以增强关键的代谢过程——即三磷酸腺苷 (ATP) 的产生。
ATP 是细胞用于几乎所有代谢功能的主要能量来源。没有 ATP,细胞就没有能量来执行甚至基本的任务。肌酸通过提供磷酸基团帮助将二磷酸腺苷 (ADP)转化为 ATP,从而支持这种能量产生(通过以肌酸和磷酸肌酸的形式储存)。[35-38]
β-羟基-β-甲基丁酸钙一水合物 (myHMB) – 2,000 毫克
为什么要将 myHMB 与胶原蛋白一起使用?
从动物模型中学到的机制:肌肉保护
对抗与年龄相关的肌肉损失
HMB 和维生素 D:针对老年人的协同疗法
不进行运动的安慰剂
HMB + 维生素 D,无需运动
安慰剂与运动
HMB + 维生素 D 与运动
HMB 在高强度运动和未经训练的人群中的作用
耐力训练期间的抗分解代谢作用
在另一项针对高强度间歇训练 (HIIT) 的研究中,24 名年龄在 17 至 34 岁之间的职业足球运动员被随机分配接受 HMB 或安慰剂。[64]
该研究旨在模拟足球比赛中典型的高强度活动和低强度阶段的爆发,这种训练因其高强度的身体需求而已知会提高 CK 和 LDH 水平。[65]然而,与安慰剂组相比,补充 HMB 的球员 CK 和 LDH 的上升幅度明显较低。[64]
这项研究意义重大,因为已经训练有素的专业运动员对补充剂的反应通常不如新手那么强烈。HMB 在如此训练有素的人群中显示出如此明显的益处,这一事实充分说明了它在竞技运动中支持肌肉恢复的潜力。
高强度训练期间的保护
HMB 的好处不仅限于耐力运动员。在一项针对接受过阻力训练的男性的研究中,参与者在进行高强度举重训练之前每天服用 3 克 HMB 或安慰剂。[53]训练包括各种复合运动,例如深蹲、卧推、硬拉和引体向上,这些运动共同针对身体所有主要肌肉群。每项运动由三组 12 次重复组成,因此训练强度很高。[53]
训练结束后,血液测试显示,服用 HMB 的男性 CK 水平明显降低,表明肌肉损伤减少。此外,与安慰剂组相比,HMB 组报告的恢复情况更好,感知恢复状态高出约 20%。[53]这些发现表明,HMB 可以作为阻力训练的宝贵补充,特别是在对肌肉施加巨大压力的高强度锻炼期间。
L-亮氨酸 – 1,000 毫克
反式香叶基香叶醇 (GG-Gold) [源自胭脂树红 (Bixa orellana)(种子)] – 150 毫克
香叶基香叶醇(GG,American River Nutrition 以GG-Gold的商品名销售) 是一种参与甲羟戊酸途径的异戊二烯化合物,对蛋白质异戊烯化和细胞功能至关重要。它通过保护肌肉细胞免受损伤,在肌肉健康中发挥着至关重要的作用,特别是在他汀类药物诱发的肌病等情况下,它有助于恢复细胞能量和自噬。
在一项特别值得注意的研究中,研究人员发现他汀类药物显著降低了大鼠的肌肉力量。然而,当用 GG 治疗大鼠时,它们的肌肉力量得到部分恢复,肌肉产生力量的能力明显提高。[72]
促进辅酶 Q10 的产生
GG 补充剂有助于恢复香叶基香叶基焦磷酸 (GGPP) 的水平,GGPP 是影响辅酶 Q10 (CoQ10) 生成的关键中间体。CoQ10 在维持肌肉力量和肌肉质量方面起着至关重要的作用,而 CoQ10 缺乏与肌肉减少症或与年龄相关的肌肉损失密切相关。[73]
一项重要研究表明,个人的 CoQ10 与胆固醇的比率与手握力密切相关,后者是肌肉功能的关键指标。[74]
由于 GG 参与甲羟戊酸途径中胆固醇生成的上游,因此补充 GG 可能会增加 CoQ10 与胆固醇的比例,从而增强 CoQ10 的合成,而不会破坏胆固醇水平。
这凸显了 GG 在改善肌肉健康方面的独特潜力,而不会干扰他汀类药物引起的降胆固醇作用。
但 GGPP 的好处不仅限于 CoQ10 的产生。一项针对大鼠骨骼肌纤维的研究表明,在几种甲羟戊酸途径代谢物中,只有 GGPP 可以防止他汀类药物引起的肌细胞能量耗竭,以三磷酸腺苷 (ATP) 浓度来衡量。[75]
这表明 GG 上调 GGPP 的能力不仅可以间接提高 CoQ10 水平,还可以直接保护肌肉组织免受能量不足的影响。
2018 年的一项研究进一步检验了 GG 抵消他汀类药物引起的肌肉损伤的能力。[76]小鼠肌肉干细胞(成肌细胞)用他汀类药物(阿托伐他汀 (ATR)、辛伐他汀 (SIM) 和甲基-β-环糊精 (MβCD))处理,然后用甲羟戊酸 (MEV)、法呢醇 (FOH)、GG 或水溶性胆固醇 (Chol-PEG) 联合处理。[76]研究发现,GG 联合治疗完全逆转了他汀类药物引起的肌肉干细胞活力的降低。[76]
研究人员将这种恢复归因于 GG 恢复自噬的能力,自噬是细胞更新的关键过程,在此过程中受损的细胞成分被分解和回收。[76] GG 通过促进蛋白质异戊烯化来实现这一点,这是由 GGPP 驱动的功能。[77]
为了验证 GGPP 在此过程中的作用,研究人员使用了 GGTI-286,这是一种香叶基香叶基转移酶 (GGTase) 的抑制剂,可促进 GG 和 GGPP 转移到蛋白质上。[77]在 GGTI-286 存在下,GG 不再影响肌肉细胞活力,这强烈表明 GGPP 是这种保护作用的关键因素。[76]
此外,GG 的益处似乎不仅限于他汀类药物治疗的肌肉细胞。调节骨骼肌自噬的酶 RAP GTPase 完全由 GG 异戊烯化。[76]需要更多研究来充分证实这些在不同情况下的影响。
香叶基香叶醇的用途非常广泛——毕竟,它是一种结构单元。它是一种不同于亮氨酸的结构单元,但仍然用于多种生物合成代谢过程,包括睾酮的形成。
维生素 D(胆钙化醇) – 25 微克(10,000 IU)(125% DV)
胆钙化醇,又称维生素 D3,是人体中维生素 D 的活性形式,是在阳光直射下自然产生的形式。[78]
研究表明,维生素 D 可以通过下调芳香化酶(一种负责将睾酮转化为雌激素的酶)对男性内分泌健康产生积极影响。[79] 同时,维生素 D3 还会上调睾酮本身的产生。[80,81]最重要的是,血清维生素 D 与血清睾酮显着相关。[80]
Song, Hongdong, et al. “Effect of Orally Administered Collagen Peptides from Bovine Bone on Skin Aging in Chronologically Aged Mice.” Nutrients, vol. 9, no. 11, 3 Nov. 2017, p. 1209, doi:10.3390/nu9111209. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707681/
Liu, JunLi, et al. “Bovine Collagen Peptides Compounds Promote the Proliferation and Differentiation of MC3T3-E1 Pre-Osteoblasts.” PLoS ONE, vol. 9, no. 6, 13 June 2014, p. e99920, doi:10.1371/journal.pone.0099920. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057461/
Liu, JunLi, et al. “Combined Oral Administration of Bovine Collagen Peptides with Calcium Citrate Inhibits Bone Loss in Ovariectomized Rats.” PLOS ONE, vol. 10, no. 8, 10 Aug. 2015, p. e0135019, doi:10.1371/journal.pone.0135019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530891/
Bolke, Liane et al. “A Collagen Supplement Improves Skin Hydration, Elasticity, Roughness, and Density: Results of a Randomized, Placebo-Controlled, Blind Study.” Nutrients vol. 11,10 2494. 17 Oct. 2019, doi:10.3390/nu11102494 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835901/
Atli Arnarson, PhD. “Methionine vs. Glycine — Is Too Much Muscle Meat Bad?” Healthline, Healthline Media, 12 Feb. 2019, https://www.healthline.com/nutrition/methionine-vs-glycine
Zhi, Zhong, et al. “L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent”. Current Opinion in Clinical Nutrition and Metabolic Care 6(2):p 229-240, March 2003. https://journals.lww.com/co-clinicalnutrition/abstract/2003/03000/l_glycine__a_novel_antiinflammatory,.13.aspx
Tomosugi, Naohisa, et al. “Effect of Collagen Tripeptide on Atherosclerosis in Healthy Humans.” Journal of Atherosclerosis and Thrombosis, vol. 24, no. 5, 1 May 2017, pp. 530–538, doi:10.5551/jat.36293. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429168/
Ganguly, Paul, and Sreyoshi Fatima Alam. “Role of homocysteine in the development of cardiovascular disease.” Nutrition journal vol. 14 6. 10 Jan. 2015, doi:10.1186/1475-2891-14-6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326479/
Jagim, Andrew R., et al. “Safety of Creatine Supplementation in Active Adolescents and Youth: A Brief Review.” Frontiers in Nutrition, vol. 5, 28 Nov. 2018, 10.3389/fnut.2018.00115; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279854/
Kerksick, Chad M., et al. “ISSN Exercise & Sports Nutrition Review Update: Research & Recommendations.” Journal of the International Society of Sports Nutrition, vol. 15, no. 1, 1 Aug. 2018, 10.1186/s12970-018-0242-y; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6090881/
Kreider, Richard B., et al. “International Society of Sports Nutrition Position Stand: Safety and Efficacy of Creatine Supplementation in Exercise, Sport, and Medicine.” Journal of the International Society of Sports Nutrition, vol. 14, no. 1, 13 June 2017, 10.1186/s12970-017-0173-z; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469049/
Stockbrugger, Barry A., and Robert G. Haennel. “Contributing Factors to Performance of a Medicine Ball Explosive Power Test: A Comparison between Jump and Nonjump Athletes.” Journal of Strength and Conditioning Research, vol. 17, no. 4, 1 Nov. 2003, pp. 768–774, doi:10.1519/1533-4287(2003)0172.0.co;2. https://pubmed.ncbi.nlm.nih.gov/14636102/
Branch, J David. “Effect of Creatine Supplementation on Body Composition and Performance: A Meta-Analysis.” International Journal of Sport Nutrition and Exercise Metabolism, vol. 13, no. 2, 2003, pp. 198–226, 10.1123/ijsnem.13.2.198; https://pubmed.ncbi.nlm.nih.gov/12945830/
Chilibeck, Philip, et al. “Effect of Creatine Supplementation during Resistance Training on Lean Tissue Mass and Muscular Strength in Older Adults: A Meta-Analysis.” Open Access Journal of Sports Medicine, vol. Volume 8, Nov. 2017, pp. 213–226, 10.2147/oajsm.s123529; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5679696/
Devries, Michael A, and Stuart M. Philips; “Creatine Supplementation during Resistance Training in Older Adults—a Meta-Analysis.” Medicine & Science in Sports & Exercise, vol. 46, no. 6, June 2014, pp. 1194–1203, 10.1249/mss.0000000000000220; https://pubmed.ncbi.nlm.nih.gov/24576864/
Chilibeck, P. D., et al. “Creatine Monohydrate and Resistance Training Increase Bone Mineral Content and Density in Older Men.” The Journal of Nutrition, Health & Aging, vol. 9, no. 5, 2005, pp. 352–353; https://pubmed.ncbi.nlm.nih.gov/16222402/
Candow, Darren G., et al. “Creatine Supplementation and Aging Musculoskeletal Health.” Endocrine, vol. 45, no. 3, 5 Nov. 2013, pp. 354–361, 10.1007/s12020-013-0070-4; https://pubmed.ncbi.nlm.nih.gov/24190049/
Bogdanis, G C, et al. “Recovery of Power Output and Muscle Metabolites Following 30 S of Maximal Sprint Cycling in Man.” The Journal of Physiology, vol. 482, no. 2, 15 Jan. 1995, pp. 467–480, 10.1113/jphysiol.1995.sp020533; https://www.ncbi.nlm.nih.gov/pubmed/7714837
Mendez-Villanueva, Alberto, et al. “The Recovery of Repeated-Sprint Exercise Is Associated with PCr Resynthesis, While Muscle PH and EMG Amplitude Remain Depressed.” PLoS ONE, vol. 7, no. 12, 17 Dec. 2012, p. e51977, 10.1371/journal.pone.0051977; https://www.ncbi.nlm.nih.gov/pubmed/23284836
Mielgo-Ayuso, Juan, et al. “Effects of Creatine Supplementation on Athletic Performance in Soccer Players: A Systematic Review and Meta-Analysis.” Nutrients, vol. 11, no. 4, 31 Mar. 2019, p. 757, 10.3390/nu11040757; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520963/
Lopez, Rebecca M et al. “Does creatine supplementation hinder exercise heat tolerance or hydration status? A systematic review with meta-analyses.” Journal of athletic training vol. 44,2 (2009): 215-23. doi:10.4085/1062-6050-44.2.215; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2657025/
Sakellaris, George, et al. “Prevention of Traumatic Headache, Dizziness and Fatigue with Creatine Administration. A Pilot Study.” Acta Paediatrica, vol. 97, no. 1, 3 Dec. 2007, pp. 31–34, 10.1111/j.1651-2227.2007.00529.x; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583396/
Anomasiri, Wilai, et al. “Low Dose Creatine Supplementation Enhances Sprint Phase of 400 Meters Swimming Performance.” Journal of the Medical Association of Thailand = Chotmaihet Thangphaet, vol. 87 Suppl 2, 1 Sept. 2004, pp. S228-232; https://pubmed.ncbi.nlm.nih.gov/16083193/
Schneider-Gold, C., et al. “Creatine Monohydrate in DM2/PROMM: A Double-Blind Placebo-Controlled Clinical Study.” Neurology, vol. 60, no. 3, 11 Feb. 2003, pp. 500–502, 10.1212/01.wnl.0000044405.29988.e1; https://pubmed.ncbi.nlm.nih.gov/12578937/
McMorris, T., et al. “Effect of Creatine Supplementation and Sleep Deprivation, with Mild Exercise, on Cognitive and Psychomotor Performance, Mood State, and Plasma Concentrations of Catecholamines and Cortisol.” Psychopharmacology, vol. 185, no. 1, 17 Jan. 2006, pp. 93–103, 10.1007/s00213-005-0269-z; https://pubmed.ncbi.nlm.nih.gov/16416332/
Fuld, J P. “Creatine Supplementation during Pulmonary Rehabilitation in Chronic Obstructive Pulmonary Disease.” Thorax, vol. 60, no. 7, 1 July 2005, pp. 531–537, 10.1136/thx.2004.030452; https://pubmed.ncbi.nlm.nih.gov/15994258/
Braegger, Christian P., et al. “Effects of Creatine Supplementation in Cystic Fibrosis: Results of a Pilot Study.” Journal of Cystic Fibrosis: Official Journal of the European Cystic Fibrosis Society, vol. 2, no. 4, 1 Dec. 2003, pp. 177–182; 10.1016/S1569-1993(03)00089-4; https://pubmed.ncbi.nlm.nih.gov/15463870/
Rae, Caroline et al. “Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial.” Proceedings. Biological sciences vol. 270,1529 (2003): 2147-50. doi:10.1098/rspb.2003.2492; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1691485/
Benton, David, and Rachel Donohoe. “The Influence of Creatine Supplementation on the Cognitive Functioning of Vegetarians and Omnivores.” The British Journal of Nutrition, vol. 105, no. 7, 2011, pp. 1100–5, 10.1017/S0007114510004733; https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/influence-of-creatine-supplementation-on-the-cognitive-functioning-of-vegetarians-and-omnivores/E2D37729902DDFA6CFC85767AD0421FC
Schilling, Brian K., et al. “Creatine Supplementation and Health Variables: A Retrospective Study.” Medicine & Science in Sports & Exercise, vol. 33, no. 2, 2001, pp. 183–188; https://journals.lww.com/acsm-msse/Fulltext/2001/02000/Creatine_supplementation_and_health_variables__a.2.aspx
Hoffman, Jay, et al. “Effect of Creatine and ß-Alanine Supplementation on Performance and Endocrine Responses in Strength/Power Athletes.” International Journal of Sport Nutrition and Exercise Metabolism, vol. 16, no. 4, Aug. 2006, pp. 430–446, 10.1123/ijsnem.16.4.430; https://pubmed.ncbi.nlm.nih.gov/17136944/
Cook, Christian J, et al. “Skill Execution and Sleep Deprivation: Effects of Acute Caffeine or Creatine Supplementation – a Randomized Placebo-Controlled Trial.” Journal of the International Society of Sports Nutrition, vol. 8, no. 1, 16 Feb. 2011, 10.1186/1550-2783-8-2; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049131/
Volek, Jeff S., et al. “The Effects of Creatine Supplementation on Muscular Performance and Body Composition Responses to Short-Term Resistance Training Overreaching.” European Journal of Applied Physiology, vol. 91, no. 5-6, 1 May 2004, pp. 628–637, 10.1007/s00421-003-1031-z; https://pubmed.ncbi.nlm.nih.gov/14685870/
Sheikholeslami Vatani, D., et al. “The Effects of Creatine Supplementation on Performance and Hormonal Response in Amateur Swimmers.” Science & Sports, vol. 26, no. 5, Nov. 2011, pp. 272–277, 10.1016/j.scispo.2011.07.003; https://www.sciencedirect.com/science/article/abs/pii/S0765159711001171
Mujika, I., and S. Padilla. “Creatine Supplementation as an Ergogenic Aid for Sports Performance in Highly Trained Athletes: A Critical Review.” International Journal of Sports Medicine, vol. 18, no. 07, Oct. 1997, pp. 491–496, 10.1055/s-2007-972670; https://www.ncbi.nlm.nih.gov/pubmed/9414070
Terjung, RL, et al; “Physiological and Health Effects of Oral Creatine Supplementation.” Medicine & Science in Sports & Exercise, vol. 32, no. 3, Mar. 2000, pp. 706–717, 10.1097/00005768-200003000-00024; https://www.ncbi.nlm.nih.gov/pubmed/10731017
Guzun, R., et al. “Systems Bioenergetics of Creatine Kinase Networks: Physiological Roles of Creatine and Phosphocreatine in Regulation of Cardiac Cell Function.” Amino Acids, vol. 40, no. 5, 10 Mar. 2011, pp. 1333–1348, 10.1007/s00726-011-0854-x; https://www.ncbi.nlm.nih.gov/pubmed/21390528
Adhihetty, Peter J., and M. Flint Beal. “Creatine and Its Potential Therapeutic Value for Targeting Cellular Energy Impairment in Neurodegenerative Diseases.” NeuroMolecular Medicine, vol. 10, no. 4, 13 Nov. 2008, pp. 275–290, 10.1007/s12017-008-8053-y; https://www.ncbi.nlm.nih.gov/pubmed/19005780
Avgerinos, Konstantinos I et al. “Effects of creatine supplementation on cognitive function of healthy individuals: A systematic review of randomized controlled trials.” Experimental gerontology vol. 108 (2018): 166-173. doi:10.1016/j.exger.2018.04.013 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093191/
Forbes, Scott C et al. “Effects of Creatine Supplementation on Brain Function and Health.” Nutrients vol. 14,5 921. 22 Feb. 2022, doi:10.3390/nu14050921 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912287/
Brosnan, John T et al. “The metabolic burden of creatine synthesis.” Amino acids vol. 40,5 (2011): 1325-31. doi:10.1007/s00726-011-0853-y https://link.springer.com/article/10.1007/s00726-011-0853-y
Deminice, Rafael, et al. “Creatine Supplementation Reduces Increased Homocysteine Concentration Induced by Acute Exercise in Rats.” European Journal of Applied Physiology, vol. 111, no. 11, 1 Nov. 2011, pp. 2663–2670, 10.1007/s00421-011-1891-6; https://www.ncbi.nlm.nih.gov/pubmed/21394640
PubChem. “Creatine Monohydrate.” Nih.gov, PubChem, 2019; https://pubchem.ncbi.nlm.nih.gov/compound/Creatine-monohydrate
Kan, H.E., et al. “Intake Of13C-4 Creatine Enables Simultaneous Assessment of Creatine and Phosphocreatine Pools in Human Skeletal Muscle By13C MR Spectroscopy.” Magnetic Resonance in Medicine, vol. 56, no. 5, Nov. 2006, pp. 953–957, 10.1002/mrm.21068; https://onlinelibrary.wiley.com/doi/10.1002/mrm.21068
Wyss, Markus, and Rima Kaddurah-Daouk. “Creatine and Creatinine Metabolism.” Physiological Reviews, vol. 80, no. 3, 1 July 2000, pp. 1107–1213, 10.1152/physrev.2000.80.3.1107; https://journals.physiology.org/doi/full/10.1152/physrev.2000.80.3.1107
Brosnan, John T., et al. “The Metabolic Burden of Creatine Synthesis.” Amino Acids, vol. 40, no. 5, 1 May 2011, pp. 1325–1331, 10.1007/s00726-011-0853-y; https://pubmed.ncbi.nlm.nih.gov/21387089/
Calles-Escandon, J., et al. “Influence of Exercise on Urea, Creatinine, and 3-Methylhistidine Excretion in Normal Human Subjects.” American Journal of Physiology-Endocrinology and Metabolism, vol. 246, no. 4, 1 Apr. 1984, pp. E334–E338, doi:10.1152/ajpendo.1984.246.4.E334. https://pubmed.ncbi.nlm.nih.gov/6720887/
Mirza, Kamran, et al. “Comparison of the anticatabolic effects of leucine and Ca-β-hydroxy-β-methylbutyrate in experimental models of cancer cachexia”. Nutrition. Volume 30, Issues 7–8, July–August 2014, Pages 807-813. doi:10.1016/j.nut.2013.11.012. https://www.sciencedirect.com/science/article/abs/pii/S0899900713005406
Dodson, Shontelle, et al. “Muscle Wasting in Cancer Cachexia: Clinical Implications, Diagnosis, and Emerging Treatment Strategies.” Annual Review of Medicine, vol. 62, no. 1, 18 Feb. 2011, pp. 265–279, doi:10.1146/annurev-med-061509-131248. https://www.annualreviews.org/doi/10.1146/annurev-med-061509-131248
Jerger, Simon, et al. “Effects of Specific Collagen Peptide Supplementation Combined with Resistance Training on Achilles Tendon Properties.” Scandinavian Journal of Medicine & Science in Sports, 20 Apr. 2022, doi:10.1111/sms.14164. https://onlinelibrary.wiley.com/doi/10.1111/sms.14164
McAlindon, T.E., et al. “Change in Knee Osteoarthritis Cartilage Detected by Delayed Gadolinium Enhanced Magnetic Resonance Imaging Following Treatment with Collagen Hydrolysate: A Pilot Randomized Controlled Trial.” Osteoarthritis and Cartilage, vol. 19, no. 4, Apr. 2011, pp. 399–405, doi:10.1016/j.joca.2011.01.001. https://www.sciencedirect.com/science/article/pii/S1063458411000148
Zdzieblik, Denise, et al. “The Influence of Specific Bioactive Collagen Peptides on Knee Joint Discomfort in Young Physically Active Adults: A Randomized Controlled Trial.” Nutrients, vol. 13, no. 2, 5 Feb. 2021, p. 523, doi:10.3390/nu13020523. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915677/
Wilson, Jacob M., et al. “β-Hydroxy-β-Methylbutyrate Free Acid Reduces Markers of Exercise-Induced Muscle Damage and Improves Recovery in Resistance-Trained Men.” British Journal of Nutrition, vol. 110, no. 3, 3 Jan. 2013, pp. 538–544, doi: 10.1017/S0007114512005387. https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/hydroxymethylbutyrate-free-acid-reduces-markers-of-exerciseinduced-muscle-damage-and-improves-recovery-in-resistancetrained-men/65C5A7619B0F0E857960170011B1FFD2
Tsuchiya, Yosuke, et al. “Low Dose of β-Hydroxy-β-Methylbutyrate (HMB) Alleviates Muscle Strength Loss and Limited Joint Flexibility Following Eccentric Contractions.” Journal of the American College of Nutrition, vol. 40, no. 3, 13 Apr. 2020, pp. 211–218, doi:10.1080/07315724.2020.1752330. https://pubmed.ncbi.nlm.nih.gov/32281915/
Bischof, Kevin, et al. “Reduction in Systemic Muscle Stress Markers after Exercise-Induced Muscle Damage Following Concurrent Training and Supplementation with Specific Collagen Peptides – a Randomized Controlled Trial.” Frontiers in Nutrition, vol. 11, 25 Mar. 2024, doi:10.3389/fnut.2024.1384112. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10999617/
Sciorati, Clara et al. “Pharmacological blockade of TNFα prevents sarcopenia and prolongs survival in aging mice.” Aging vol. 12,23 (2020): 23497-23508. doi:10.18632/aging.202200; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762456/
Wu, Hongmei, et al. “Effect of Beta-Hydroxy-Beta-Methylbutyrate Supplementation on Muscle Loss in Older Adults: A Systematic Review and Meta-Analysis.” Archives of Gerontology and Geriatrics, vol. 61, no. 2, Sept. 2015, pp. 168–175, doi:10.1016/j.archger.2015.06.020. https://www.sciencedirect.com/science/article/abs/pii/S0167494315300261
Deutz, Nicolaas E.P., et al. “Effect of β-Hydroxy-β-Methylbutyrate (HMB) on Lean Body Mass during 10 Days of Bed Rest in Older Adults.” Clinical Nutrition, vol. 32, no. 5, Oct. 2013, pp. 704–712, doi:10.1016/j.clnu.2013.02.011; https://pubmed.ncbi.nlm.nih.gov/23514626/
Rathmacher, John A, et al. “Long-Term Effects of Calcium β-Hydroxy-β-Methylbutyrate and Vitamin D3 Supplementation on Muscular Function in Older Adults with and without Resistance Training: A Randomized, Double-Blind, Controlled Study.” The Journals of Gerontology: Series A, vol. 75, no. 11, 28 Aug. 2020, pp. 2089–2097, doi:10.1093/gerona/glaa218; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566440/
Hurst, Christopher et al. “Resistance exercise as a treatment for sarcopenia: prescription and delivery.” Age and ageing vol. 51,2 (2022): afac003. doi:10.1093/ageing/afac003 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840798/
Wilson, Jacob M et al. “International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB).” Journal of the International Society of Sports Nutrition vol. 10,1 6. 2 Feb. 2013, doi:10.1186/1550-2783-10-6; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568064/
Holeček, Milan. “Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions.” Journal of cachexia, sarcopenia and muscle vol. 8,4 (2017): 529-541. doi:10.1002/jcsm.12208; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566641/
Knitter, A. E., et al. “Effects of β-Hydroxy-β-Methylbutyrate on Muscle Damage after a Prolonged Run.” Journal of Applied Physiology, vol. 89, no. 4, 1 Oct. 2000, pp. 1340–1344, doi:10.1152/jappl.2000.89.4.1340. https://journals.physiology.org/doi/full/10.1152/jappl.2000.89.4.1340
Rezaeimanesh, Davar. “Response of Muscle Damage Indices to Short-Term Supplementation of HMB-FA in Professional Soccer Players.” Journal of Pharmaceutical Negative Results, vol. 13, no. 1, 30 Jan. 2022, pp. 68–74; https://www.pnrjournal.com/index.php/home/article/view/188/187
Cipryan, Lukas. “IL-6, Antioxidant Capacity and Muscle Damage Markers Following High-Intensity Interval Training Protocols.” Journal of human kinetics vol. 56 139-148. 15 Mar. 2017, doi:10.1515/hukin-2017-0031 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384061/
Anthony, Joshua C., et al. “Signaling Pathways Involved in Translational Control of Protein Synthesis in Skeletal Muscle by Leucine.” The Journal of Nutrition, vol. 131, no. 3, Mar. 2001, pp. 856S860S, doi:10.1093/jn/131.3.856s. https://pubmed.ncbi.nlm.nih.gov/11238774/
A, Mero. “Leucine Supplementation and Intensive Training.” Sports Medicine (Auckland, N.Z.), 1 June 1999. https://pubmed.ncbi.nlm.nih.gov/10418071/
Lynch, Christopher J., et al. “Leucine Is a Direct-Acting Nutrient Signal That Regulates Protein Synthesis in Adipose Tissue.” American Journal of Physiology-Endocrinology and Metabolism, vol. 283, no. 3, Sept. 2002, pp. E503–E513, 10.1152/ajpendo.00084.2002; https://journals.physiology.org/doi/full/10.1152/ajpendo.00084.2002
Lynch, Christopher J., et al. “Tissue-Specific Effects of Chronic Dietary Leucine and Norleucine Supplementation on Protein Synthesis in Rats.” American Journal of Physiology-Endocrinology and Metabolism, vol. 283, no. 4, 1 Oct. 2002, pp. E824–E835, 10.1152/ajpendo.00085.2002; https://journals.physiology.org/doi/full/10.1152/ajpendo.00085.2002
Lynch, C. J., et al. “Regulation of Amino Acid-Sensitive TOR Signaling by Leucine Analogues in Adipocytes.” Journal of Cellular Biochemistry, vol. 77, no. 2, 1 Mar. 2000, pp. 234–251; https://pubmed.ncbi.nlm.nih.gov/10723090/
Katsanos, Christos S., et al. “A High Proportion of Leucine Is Required for Optimal Stimulation of the Rate of Muscle Protein Synthesis by Essential Amino Acids in the Elderly.” American Journal of Physiology-Endocrinology and Metabolism, vol. 291, no. 2, Aug. 2006, pp. E381–E387, doi:10.1152/ajpendo.00488.2005. https://pubmed.ncbi.nlm.nih.gov/16507602/
Irwin, Jordon C et al. “Geranylgeraniol prevents statin-induced skeletal muscle fatigue without causing adverse effects in cardiac or vascular smooth muscle performance.” Translational research : the journal of laboratory and clinical medicine vol. 215 (2020): 17-30. doi:10.1016/j.trsl.2019.08.004. https://www.sciencedirect.com/science/article/abs/pii/S1931524419301677
Yen, Chi-Hua et al. “Identification of Coenzyme Q10 and Skeletal Muscle Protein Biomarkers as Potential Factors to Assist in the Diagnosis of Sarcopenia.” Antioxidants (Basel, Switzerland) vol. 11,4 725. 6 Apr. 2022, doi:10.3390/antiox11040725. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030756/
Fischer, Alexandra et al. “Coenzyme Q10 Status as a Determinant of Muscular Strength in Two Independent Cohorts.” PloS one vol. 11,12 e0167124. 1 Dec. 2016, doi:10.1371/journal.pone.0167124. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132250/
Tanaka, Syoko et al. “Mechanism of statin-induced contractile dysfunction in rat cultured skeletal myofibers.” Journal of pharmacological sciences vol. 114,4 (2010): 454-63. doi:10.1254/jphs.10229fp. https://www.sciencedirect.com/science/article/pii/S1347861319308230
Jaśkiewicz, Anna et al. “Geranylgeraniol Prevents Statin-Dependent Myotoxicity in C2C12 Muscle Cells through RAP1 GTPase Prenylation and Cytoprotective Autophagy.” Oxidative medicine and cellular longevity vol. 2018 6463807. 21 May. 2018, doi:10.1155/2018/6463807. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987243/
Hottman, David A, and Ling Li. “Protein prenylation and synaptic plasticity: implications for Alzheimer’s disease.” Molecular neurobiology vol. 50,1 (2014): 177-85. doi:10.1007/s12035-013-8627-z. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082763/
Nair, Rathish, and Arun Maseeh. “Vitamin D: The ‘Sunshine’ Vitamin.” Journal of Pharmacology & Pharmacotherapeutics, vol. 3, no. 2, 2012, pp. 118–26, 10.4103/0976-500X.95506. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356951/
Kinuta, Keiko, et al. “Vitamin D Is an Important Factor in Estrogen Biosynthesis of Both Female and Male Gonads*.” Endocrinology, vol. 141, no. 4, 1 Apr. 2000, pp. 1317–1324, 10.1210/endo.141.4.7403. https://www.ncbi.nlm.nih.gov/pubmed/10746634
Wehr, E., et al. “Association of Vitamin D Status with Serum Androgen Levels in Men.” Clinical Endocrinology, Dec. 2009, 10.1111/j.1365-2265.2009.03777.x. https://pubmed.ncbi.nlm.nih.gov/20050857/
Pilz, S, et al. “Effect of Vitamin D Supplementation on Testosterone Levels in Men.” Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones et Metabolisme, vol. 43, no. 3, 2011, pp. 223–5, 10.1055/s-0030-1269854. https://pubmed.ncbi.nlm.nih.gov/21154195/
转载须知
标注‘原创’仅代表原创编译,本平台不主张对原文的版权。本平台转载仅仅是出于学术交流和传播信息的需要,并不意味着代表本平台观点或证实其内容的真实性;转载文章版权归原作者所有,作者如果不希望被转载或有侵权行为,请联系本平台删除。