花器官的形成对被子植物的繁殖至关重要,鉴定大豆花器官发育基因,能够提高大豆产量和品质。拟南芥中LEAFY基因在花原基和花器官发育方面起着重要作用,近些年LEAFY同源基因在其他作物上已经得到了广泛研究,但是大豆中的LEAFY同源基因尚缺乏相关研究。
该研究首先鉴定到大豆中的两个LEAFY基因,分别命名为LFY1和LFY2。ddPCR方法发现LFY基因在未开放的花和生长点中均有显著表达,并且在鉴定的组织中,LFY2的转录丰度均比LFY1高。原位杂交实验证明LFY1和LFY2在3叶期至5叶期的花分生组织中产生强信号,表明LFY在成花前期表达,并且可能参与调控大豆花器官发育。作者通过基因编辑技术获得了两个纯合的lfy1和lfy2单突变体以及lfy1 lfy2双突变体材料,在培养箱中观察表型发现,lfy1的两个单突变体材料lfy1-1和lfy1-2与对照相比表现出正常的营养生长和结荚,但是lfy2两个单突变体植株的叶腋处产生的成簇叶状结构导致植株不育,大部分不能正常形成花序组织,部分成花也表现出异常的花器官形态,lfy2花器官的数量和形态均异常。同时也观察到lfy1-1 lfy2-1双突变体材料未能产生花器官并且表现出完全不育,叶腋处全部为叶状结构簇(图1)。作者在高纬度地区石家庄和低纬度地区广州均种植lfy1和lfy2单突变体材料来观察田间表型,在两种自然条件下lfy1均表现出正常的植物发育情况,但lfy2正常成熟的豆荚很少(图2)。基于以上结果,作者提出2个大豆LFY基因以一种不均衡的方式调控大豆花器官发育,其中LFY2起主导作用。图1 大豆lfy突变体的产生和表型
在拟南芥中,LEAFY通过结合AP1的启动子区域来调控AP1的表达,AP1参与调控花器官发育。有研究表明大豆中存在4个AP1同源基因,AP1四重突变体表现出花器官畸形,和lfy2的花器官形态相似。作者进一步探究大豆中LFY和AP1的转录调控关系,RT-qPCR结果表明在lfy2单突变体和lfy1lfy2双突变体背景下,AP1a和AP1b显著下调。烟草瞬时转化实验证明,LFY2可以促进AP1a和AP1b启动子的活性。结果表明大豆LFY可以通过调控AP1a和AP1b的转录来影响花器官发育。该研究得到了国家自然科学基金、广东省自然科学基金等项目的资助。广州大学生命科学学院讲师王玲爽、博士后刘欢和博士研究生陈磊为本文的共同第一作者。广州大学孔凡江教授为本文通讯作者。
Wang, L., Liu, H., Chen, L. et al. LEAFY1 and 2 are required for floral organ development in soybean. aBIOTECH (2024). https://doi.org/10.1007/s42994-024-00192-2
相关阅读:
aBIOTECH | Jeremy Murray/许萍综述CRISPR/Cas9基因编辑技术在豆科植物共生固氮中的应用
aBIOTECH | 关跃峰团队创制低植酸与产量表型平衡的基因编辑大豆
aBIOTECH | 拜耳作物科学研究团队在大豆和玉米中成功开发基因型灵活的转化和编辑技术
aBIOTECH | 田志喜团队发现大豆正调控抗旱新基因GmACO1
Editors-in-Chief:
Prof. Sanwen Huang
2023 IF 4.6
Indexed in EI, ESCI, PubMed Central, SCOPUS, CSCD, Google Scholar, CNKI, Dimensions...
The aims of aBIOTECH are two-fold: First to publish seminal articles that focus the relevant research communities to achieve development of superior agroecosystems, globally. Next, to foster national and international engagement, including business, politics, and society, to build an understanding of modern agrobiotechnology/genomics-empowered strategies, which can ensure the availability of adequate nutritious foods to feed the growing global population.
Relevant topics include, but are not limited to, the followings:TRANSGENE, GENOME EDITING TECHNOLOGIES & APPLICATIONS: Advanced transgene or genome editing technologies or methodologies; applications of transgene or genome editing in genetic improvement of agriculturally important traits, which otherwise are impossible by conventional breeding; commercialization of modified or gene-edited crops/livestock for agricultural production; safety and regulatory affairs/policies.METABOLIC ENGINEERING: Synthesis of bioactive natural products, including study of their metabolic networks and functions, using both genetic and synthetic biology approaches.TECHNOLOGIES FOR DISEASE CONTROL: Developmental, physiological, biochemical, and technological studies, and innovative strategies relevant to disease control in crop or livestock production systems.GENOMICS & BREEDING: Genome, pan-genome, and metagenome studies, multi-omics data mining approaches, intelligent design breeding theory, approaches, and practice, and innovative analytical/bioinformatics tools/methods, with potential to advance crop and livestock breeding programs.ROOT-SOIL-MICROBIOME AGROECOSYSTEMS: Targeted breeding and engineering of essential root biology and associated microbiome traits directed to enhance crop performance under sub-optimal soil abiotic and/or biotic conditions.
投稿、转载信息发布及合作等事宜请联系010-82109925/82109903
官方唯一投稿系统:http://www.abiotech.net
长按关注:aBIOTECH