目前CRISPR/Cas9技术已发展为高效基因编辑工具,并被广泛应用于植物学研究。豆科植物与根瘤菌共生固氮将空气中的氮气转化成能被植物吸收利用的氮素,是自然界中生物固氮的重要途经,可以有效降低农业生产中的化肥施用量。通过CRISPR/Cas9基因编辑技术改造水稻、小麦、玉米等粮食作物,使其具有共生固氮的能力,有助于未来绿色农业的发展。
作者首先介绍了CRISPR/Cas9在模式豆科植物蒺藜苜蓿(Medicago truncatula)、百脉根(Lotus japonicus)以及豆科作物大豆(Glycine max)中进行单个或多个基因以及非编码序列的编辑,从而探究共生固氮中早期侵染线的形成到后期根瘤发生、免疫应答调控网络以及系统性调控共生固氮分子机制等相关研究。同时,作者对CRISPR/Cas9在豆科植物中编辑效率的影响因素进行了分析总结,包括比较不同组成型启动子和具有不同特征的gRNA的编辑效率,还列举了CRISPR/Cas9基因编辑技术应用于转基因根转化和传统稳定遗传转化的优缺点。图1 细胞特异性CRISPR/Cas9技术相较于传统基因编辑的优点
作者重点总结了细胞类型特异性CRISPR/Cas9基因编辑技术在豆科植物共生固氮中的应用。包括使用苜蓿根瘤固氮区特异性表达的MtNCR158启动子驱动Cas9的表达进行Nodule Inception(MtNIN)的细胞特异性敲除,用于研究NIN等重要转录因子在根瘤固氮区的功能;以及利用苜蓿与根瘤菌共生早期侵染细胞中特异性表达的MtChOMT3启动子驱动Cas9对Aurora kinase 1(MtAUR1)基因进行精准编辑,研究AUR1等细胞周期基因在根瘤菌侵染早期的功能。该技术的优点在于规避由传统CRISPR/Cas9带来的严重表型缺陷和致死性突变等问题(图1)。作者随后还讨论了该技术的限制因素主要在于对特异性启动子的选择,转基因植物的筛选以及嵌合突变体的鉴定;并提出了应对策略和解决方案,总结了在苜蓿转基因根中应用细胞特异性CRISPR/Cas9的简化流程(图2)。图2 在苜蓿转基因根中应用细胞特异性CRISPR/Cas9的简化流程
总之,基于CRISPR/Cas9的基因编辑技术已成为豆科生物学研究的强大工具,为农业改良和共生固氮研究提供了新的技术手段。单细胞时空转录组测序技术的兴起预示着将能发掘出更多细胞类型特异性启动子,与CRISPR/Cas9基因编辑技术相结合,有望在不久的将来实现非豆科植物共生固氮的宏伟目标。中国科学院分子植物卓越创新中心高锦鹏博士(现为剑桥大学作物科学中心博士后)和巴黎萨克雷大学博士研究生苏洋杨为该综述论文的共同第一作者。该研究受到国家自然科学基金,国家留学基金委,比尔梅琳达盖茨基金会Enabling Nutrient Symbioses in Agriculture (ENSA)等多个项目的资助。
Gao, JP., Su, Y., Jiang, S. et al. Applying conventional and cell-type-specific CRISPR/Cas9 genome editing in legume plants. aBIOTECH (2024). https://doi.org/10.1007/s42994-024-00190-4
相关阅读:
aBIOTECH | 关跃峰团队创制低植酸与产量表型平衡的基因编辑大豆
aBIOTECH | 中国农科院作科所建立基因编辑大豆可视化识别技术体系
aBIOTECH | 拜耳作物科学研究团队在大豆和玉米中成功开发基因型灵活的转化和编辑技术
aBIOTECH | 王孝林课题组综述乙烯信号传导与植物胁迫响应在植物-微生物组全息生物体系中的调控机制
aBIOTECH | 关跃峰课题组报道南方大豆易炸荚的“基因疗法”
aBIOTECH评述 | 解码根系微生物组,推动农业可持续发展
aBIOTECH | 屠焰/马涛团队通过优化Kraken2工具提高微生物物种分类性能
Editors-in-Chief:
Prof. Sanwen Huang
2023 IF 4.6
Indexed in EI, ESCI, PubMed Central, SCOPUS, CSCD, Google Scholar, CNKI, Dimensions...
The aims of aBIOTECH are two-fold: First to publish seminal articles that focus the relevant research communities to achieve development of superior agroecosystems, globally. Next, to foster national and international engagement, including business, politics, and society, to build an understanding of modern agrobiotechnology/genomics-empowered strategies, which can ensure the availability of adequate nutritious foods to feed the growing global population.
Relevant topics include, but are not limited to, the followings:TRANSGENE, GENOME EDITING TECHNOLOGIES & APPLICATIONS: Advanced transgene or genome editing technologies or methodologies; applications of transgene or genome editing in genetic improvement of agriculturally important traits, which otherwise are impossible by conventional breeding; commercialization of modified or gene-edited crops/livestock for agricultural production; safety and regulatory affairs/policies.METABOLIC ENGINEERING: Synthesis of bioactive natural products, including study of their metabolic networks and functions, using both genetic and synthetic biology approaches.TECHNOLOGIES FOR DISEASE CONTROL: Developmental, physiological, biochemical, and technological studies, and innovative strategies relevant to disease control in crop or livestock production systems.GENOMICS & BREEDING: Genome, pan-genome, and metagenome studies, multi-omics data mining approaches, intelligent design breeding theory, approaches, and practice, and innovative analytical/bioinformatics tools/methods, with potential to advance crop and livestock breeding programs.ROOT-SOIL-MICROBIOME AGROECOSYSTEMS: Targeted breeding and engineering of essential root biology and associated microbiome traits directed to enhance crop performance under sub-optimal soil abiotic and/or biotic conditions.
投稿、转载信息发布及合作等事宜请联系010-82109925/82109903
官方唯一投稿系统:http://www.abiotech.net
长按关注:aBIOTECH