Hi-C技术是一种高通量染色体构象捕获技术,它通过结合染色质区域捕获与高通量测序技术,用于研究全基因组范围内整个染色质DNA在空间位置上的关系。这项技术能够量化三维空间中基因组的染色质间交联,解析全基因组互作模式,构建三维空间结构模型,构建全基因组互作图谱,辅助提升基因组组装,以及构建基因组单体型图谱。
Hi-C技术原理及步骤
1. 甲醛固定:Hi-C技术的第一步是使用甲醛将基因组中参与染色质互作作用的蛋白质凝固,一般将活体样本在室温用1-3%的甲醛处理10-30分钟。这一步骤对于固定DNA的构象至关重要。2. 酶切序列:接着,使用限制性内切酶切割基因组,打断后的片段大小会影响测序分辨率。常用的限制性内切酶如EcoR1或HindIII,用于每4000bp切割一次基因组,在人类基因组中产生约100万个片段。3. 末端修复:得到的片段具有平末端或粘性末端,然后将末端补平修复,并加入生物素。4. 连接及解交联:使用T4 DNA连接酶连接互作片段,形成环状。将连接DNA片段的蛋白质消化掉,得到交联片段。5. 序列打断:使用超声波或其他方式,再次打断片段。6. 上机测序:用磁珠将带生物素的捕获,制作文库,上机测序。Hi-C技术在医学科研中的应用
构建染色体跨度单体型:Hi-C技术能够根据染色体边界的存在构建出染色体跨度水平的单体型图谱,这对于遗传病的研究和个体化医疗具有重要意义。TAD分析:TAD(topologically associating domains)是拓扑关联域,指具有“特殊生物学功能”的相互作用“方块”,在不同的细胞类型间和物种间存在较高的保守性。Hi-C技术可以用于TAD分析,揭示基因组在空间结构中的基本组织形式。三维结构重构:基于染色体全部的互作信息,Hi-C技术可以利用数学模型,将二维的染色体互作信息转化成三维空间结构的物理坐标,构建全基因组的三维空间结构。基因组组装和单体型图谱构建:Hi-C技术辅助提升基因组组装的准确性,构建基因组单体型图谱,有助于遗传病的研究和个体化医疗。调控元件开发:Hi-C技术可以与RNA-Seq、ChIP-Seq等数据联合分析,从基因调控网络和表观遗传网络角度阐述疾病发生的分子机制。Hi-C技术的特点
高通量和高分辨率:Hi-C技术能够提供全基因组范围内的互作信息,获得高分辨率的染色质三维结构信息,这对于医学科研中的基因组学研究尤为重要。全基因组覆盖:Hi-C技术可以实现全基因组覆盖检测全部未知互作区域,这是其相较于其他三维基因组技术的一个显著优势。
- Liu, T., Zhu, Q., et al. "Integrated Analysis of RNA-seq, ATAC-seq, CUT&RUN, and Hi-C Data Reveals the Role of Matrin3 in Myogenesis." Nature Communications. 2024.
- Pueschel, R., Coraggio, F., et al. "From single genes to entire genomes: the search for a function of nuclear organization." Development. 2016, 143 (6): 910.
- Risca, V.I., Greenleaf, W.J. "Unraveling the 3D genome: genomics tools for multiscale exploration." Trends in Genetics. 2015, 31 (7): 357-372.
- Dekker, J., Marti-Renom, M.A., et al. "LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice." Nature.
- Rao, S.S.P., et al. "Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture." Nature Genetics.
- Duan, Z., et al. "3D structures of individual mammalian genomes studied by single-cell Hi-C." Nature.
- Wu, X., et al. "Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition." Nature.
- Guo, F., et al. "3D Chromatin Structures of Mature Gametes and Structural Reprogramming during Mammalian Embryogenesis." Cell.
- Nagano, T., et al. "Allelic reprogramming of 3D chromatin architecture during early mammalian development." Nature.
- Šimková, H., et al. "Hi-C technology: from genome assembly to transcriptional regulation." Journal of Experimental Botany. 2024.
- Dekker, J., Marti-Renom, M.A. "Exploring the three-dimensional organization of genomic DNA in human disease." Nature Reviews Genetics.
- Lieberman Aiden, E., et al. "Comprehensive mapping of long-range interactions reveals folding principles of the human genome." Science.
- Nora, E.P., et al. "Spatial partitioning of the regulatory landscape of the X-inactivation centre." Nature.
- Sexton, T., et al. "Three-dimensional folding and functional organization principles of the Drosophila genome." Cell.
- Nora, E.P., et al. "Targeted degradation of CTCF perturbs genome organization and association between regulatory elements and their target genes." Science.