纳米生物技术在视网膜诊断、药理和外科手术以及药物输送方面大有裨益(表 1 和表 2),再生医学也从纳米科学中受益。视网膜非常适合纳米生物技术创新,因为其治疗和手术分别在微克和微米范围内,加上其相对的免疫特权和可及性。本篇文章,我们将回顾纳米技术在视网膜领域的现状。
表1.视网膜纳米诊断技术研发管线
诊断
治疗:药物、输送系统和靶向
手术辅助工具
纳米假体
再生纳米生物技术
未来展望
仅仅是开始
参考文献
1. Zagaynova E, Shirmanova M, Kirillin Y, et al. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom in vivo studies and Monte Carlo simulation. Phys Med Biol. 2008;53:4995-5009.
2. Barkhade T, Indolaya A, Poddar R, et al. Iron content titanium dioxide nanoparticles as exogenous contrast agent for tissue imaging using swept-source optical coherence tomography.AIP Advances. 2021;11:015023.
3. Bosshart PD, Engel A, Fotiadis D. High-resolution atomic force microscopy imaging of rhodopsin in rod outer segment disk membranes. Methods Mol Biol. 2015;1271:189-203.
4. Song W, Wei Q, Liu W, et al. A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography.Sci Rep. 2014;4(6525):1-7.
5. Nguyen VP, Paulus YM. Photoacoustic microscopy of the retina and choroid: Imaging by hearing the retina.Retina Physician. 2020;17:42-44, 46, 47.
6. Tang X, Jonas A, Nysten B, et al. Direct protein detection with a nano-interdigitated array gate MOSFET.Biosens Bioelectron. 2009;24(12):3531-3537.
7. Booker R, Boysen E. Nanotechnology for Dummies. Wiley-VCH Verlag GmbH & Co;2005;247.
8. Shmueli R, Ohnaka M, Miki A, et al. Long-term suppression of ocular neovascularization by intraocular injection of biodegradable polymeric particles containing a serpin-derived peptide.Biomaterials. 2013;34:7544-7551.
9. Nguyen D, Luo LJ, Yang CJ, et al. Highly retina-permeating and long-acting resveratrol/metformin nanotherapeutics for enhanced treatment of macular degeneration.ACS Nano. 2023;17:168-183.
10. Zhang J, Zhou T, Wang L, et al. Nanoemulsion as a vehicle to enhance the ocular absorption after topically applied cyclosporine a in the rabbit eye.Invest Ophthalmol Vis Sci. 2012;53(14):488.
11. Xin G, Zhang M, Zhong Z, et al. Ophthalmic drops with nanoparticles derived from a natural product for treating age-related macular degeneration.ACS Appl Mater Interfaces. 2020;12:57710-57720.
12. Palamoor M, Jablonski M. Synthesis, characterization and in vitro studies of celecoxib-loaded poly (orth ester) nanoparticles targeted for intraocular drug delivery.Colloids Surf B Biointerfaces. 2013;112:474-482.
13. Radwan S, El-Kamel A, Zaki E, et al. Hyaluronic-coated albumin nanoparticles for the non-invasive delivery of apatinib in diabetic retinopathy.Int J Nanomedicine. 2021;16:4481-4494.
14. Kambhampati S, Bhutto I, Wu T, et al. Systemic dendrimer nanotherapies for targeted suppression of choroidal inflammation and neovascularization in age-related macular degeneration.J Control Release. 2021;10:335:527-540.
15. Burgess R. Understanding Nanomedicine. Pan Stanford Publishing;2012:1-44.
16. Kim P, Lieber CM. Nanotube tweezers.Science. 1999;286(5447):2148-2150.
17. Sretavan D, Chang W, Hawkes E, et al. Microscale surgery on single axons.Neurosurgery. 2005;57(4):635-646.
18. Sauvage F, Nguyen V, Li Y, et al. Laser-induced nanobubbles safely ablate vitreous opacities in vivo.Nat Nanotechnol. 2022;17(5):552-559.
19. Maya-Vetencourt JF, Manfredi G, Mete M, et al. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy.Nat Nanotechnol. 2020;15:698-708.
20. Pampaloni N, Scaini D, Perissinotto F, et al. Sculpting neurotransmission during synaptic development by 2D nanostructured interfaces.Nanomedicine. 2018;14(7);2521-2532.
21. Mukherjee P, Bhattacharya R, Wang P, et al. Antiangiogenic properties of gold nanoparticles.Clin Canc Res. 205;11(9):3530-3534.
22. Das S, Chigurupati S, Dowding J, et al. Therapeutic potential of nanoceria in regenerative medicine.MRS Bulletin. 2014;39:976-983.
23. Emmerich K, White DT, Kambhampati SV, et al. Nanoparticle-based targeting of microglia improves the neural regeneration enhancing effects of immunosuppression in the zebrafish retina.Commun Biol. 2023;6(534):534.
24. Shimizu T, kishi R, Yamada T, Hata K. Radical scavenging activity of carbon nanotubes: toward appropriate selection of a radical initiator. RSC Adv. 2020;10:29419-29423.
25. Dellinger A, Cunun P, Lee D, et al. Inhibition of inflammatory arthritis using fullerene nanomaterials.Plos One. 2015;10(4):e0126290.
26. Fayyaz M, Musarrat J, Tsipursky M, Irudayaraj J. Dextran-based oxygen nanobubbles for treating inner retinal hypoxia.ACS Nano. 2021;4(10):6583-6593.
27. Cupini S, Di Marco S, Boselli L, et al. Platinum nanozymes counteract photoreceptor degeneration and retina inflammation in a light-damage model of age-related macular degeneration.ACS Nano. 2023;17(22):22800-22820.
28. Yanai A, Häfeli U, Metcalfe A, et al. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles.Cell Transplant. 2012;21(6):1137-1148.
29. Sahle F, KimS, Niloy K, et al. Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev. 2019;148:290-307.
30. Egbowon BF, Fornari E, Pally JM, et al. Retinal pigment epithelial cells can be cultured on fluocinolone acetonide treated nanofibrous scaffold.Materials and Design. 2023;232:1121522.
31. Salman A, Kantor A, McClements M, et al. Non-viral delivery of CRISPR/Cas cargo to the retina using nanoparticles: current possibilities, challenges, and limitations.Pharmaceutics. 2022;14(9):1842.
32. Bharti K, Miller S, Arnheiter H, et al. The new paradigm: retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells. Pigment Cell Melanoma Res. 2011;24(1):21-34.
33. Gu D, Wang S, Zhang S, et al. Direct transdifferentiation of Müller glial cells to photoreceptors using sonic hedgehog signaling pathway agonist purmorphamine.Mol Med Rep. 2017;16(6):7993-8002.
34. Herrera-Barrera M, Ryals R, Gautam M, et al. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates.Sci Adv. 2023;9(2):1-16.
35. Patel S, Ryals R, Weler K, et al. Lipid nanoparticles for delivery of messenger RNA to the back of the eye.J Control Release. 2019;303:91-100.
36. Batabyal S, Gajjeraman S, Bhattacharya S, et al. Nano-enhanced optical gene delivery to retinal degenerated mice.Curr Gene Ther. 2019;19(5):318-329.
37. Batabyal S, Kim S, Wright W, et al. Laser-assisted targeted gene delivery to degenerated retina improves retinal function.J Biophotonics. 2021;14(1):e202000234.
38. Zhang Z, Mugisha A, Fransisca S, et al. Emerging role of exosomes in retinal diseases.Front Cell Dev Biol. 2021;9:64360.
39. Morris D, Bounds S, Liu H, et al. Exosomal miRNA transfer between retinal microglia and RPE.Int J Mol Sci. 2020;21(10):3541.
40. Wu Z, Troll J, Jeong HH, et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye.Sci Adv. 2018;4(11):eaat4388.
41. Shaikh S, Younis M, Yuan L. Functionalized DNA nanostructures for bioimaging.Coordination Chem Rev. 2022;469:214648.
42. Colucci P, Giannaccini M, Baggiani M, et al. Neuroprotective nanoparticles targeting the retina: a polymeric platform for ocular drug delivery applications.Pharmaceutics. 2023;15(4):1096.
43. Wang K, Mitra RN, Zheng M, Han Z. Nanoceria-loaded injectable hydrogels for potential age-related macular degeneration treatment. J Biomed Mater Res A. 2018;106(11):2795-2804.
44. Herrera-Barberral M, Rylas RC, Galitam M, et al. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci Adv. 2023;9(2):eadd4623.
45. Sp S, Mitra RN, Zheng M, et al. Gene augmentation for autosomal dominant retinitis pigmentosa using rhodopsin genomic loci nanoparticles in the P23H+/-knock-in murine model. Gene Ther. 2023;30(7-8):628-640.
46. Kwon YS, Zheng M, Zhang AY, Han Z. Melanin-like nanoparticles as an alternative to natural melanin in retinal pigment epithelium cells and their therapeutic effects against age-related macular degeneration.ACS Nano. 2022;16(11):19412-19422.