When Generative AI Is and Is Not Effective

职场   2024-09-03 04:00   马来西亚  

【中文版在后面】

💡 When to Use Generative AI: A Practical Guide

🤐 Lately, some experts have been grumbling about bad AI is.

🤔 Truth be told, they simply haven't learned how and when to use it. It can be absolutely 𝐦𝐚𝐠𝐢𝐜𝐚𝐥 if you choose the right use cases.

The latest from Gartner explains the strengths and weaknesses of current 𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐀𝐈 (𝐆𝐞𝐧𝐀𝐈) models across various use cases. Understanding where GenAI excels and where it falls short can significantly impact its successful deployment in business.

🟢 𝐇𝐢𝐠𝐡𝐥𝐲 𝐄𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝐔𝐬𝐞 𝐂𝐚𝐬𝐞𝐬:

➡️ CONTENT GENERATION: GenAI is highly effective for tasks like text, image, and video generation.

➡️ CONVERSATIONAL USER INTERFACES: Virtual assistants, chatbots, and digital workers benefit significantly from GenAI’s capabilities.

🟡 𝐌𝐨𝐝𝐞𝐫𝐚𝐭𝐞𝐥𝐲 𝐄𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝐔𝐬𝐞 𝐂𝐚𝐬𝐞𝐬:

➡️ SEGMENTATION/CLASSIFICATION: Useful for clustering, customer segmentation, and object classification.

➡️ RECOMMENDATION SYSTEMS: Effective for personalized advice and recommendation engines.

🔴 𝐋𝐞𝐚𝐬𝐭 𝐄𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝐔𝐬𝐞 𝐂𝐚𝐬𝐞𝐬:

➡️ PREDICTION/FORECASTING: GenAI struggles with risk prediction, customer churn forecasting, and sales/demand predictions.

➡️ DECISION INTELLIGENCE: Falls short in areas like decision support, augmentation, and automation.

This may sound contrary to some of my other posts - but stay with me!

👉 Here's the Secret Sauce:

Generative AI is 𝐨𝐧𝐥𝐲 𝐨𝐧𝐞 𝐩𝐢𝐞𝐜𝐞 of the much broader AI landscape, and most business problems require a combination of different AI techniques.

Ignore this fact, and you risk overestimating the impacts of GenAI and implementing the technology for use cases where it will not deliver the intended results.

🔎 𝐂𝐨𝐧𝐬𝐢𝐝𝐞𝐫 𝐚𝐥𝐭𝐞𝐫𝐧𝐚𝐭𝐢𝐯𝐞 𝐀𝐈 𝐭𝐞𝐜𝐡𝐧𝐢𝐪𝐮𝐞𝐬:

◾ For areas where GenAI does not rank as “highly useful,” consider other AI techniques.

◾ Common established AI techniques to investigate include nongenerative machine learning (ML), optimization, simulation, rules/heuristics and knowledge graphs. Emerging techniques, such as causal AI, neuro-symbolic AI and first-principles AI, are also worth tracking.

◾ Trying a simpler alternative AI technique before diving into generative AI can be a smart move; they are often less risky, less expensive and easier to understand.

🔎 𝐂𝐨𝐦𝐛𝐢𝐧𝐞 𝐆𝐞𝐧𝐀𝐈 𝐦𝐨𝐝𝐞𝐥𝐬 𝐰𝐢𝐭𝐡 𝐀𝐈 𝐨𝐭𝐡𝐞𝐫 𝐭𝐞𝐜𝐡𝐧𝐢𝐪𝐮𝐞𝐬

👉 The combination of GenAI models with other AI techniques can be particularly powerful. Here are just a few examples:

◾ Nongenerative ML and GenAI models for segmentation and classification, synthetic data generation and computer vision

◾Optimization/search and GenAI models for enterprise search

◾Simulation and GenAI models for simulation acceleration

◾Graphs and GenAI models for knowledge management and retrieval-augmented generation

◾Rule-based systems and GenAI models for chatbots and robo-advisors

【中文版】

💡 何时使用生成式 AI:实用指南

🤐 最近,一些专家一直在抱怨人工智能的糟糕之处。

🤔 说实话,他们根本没有学会如何以及何时使用它。如果您选择正确的用例,那绝对是神奇的。

Gartner 的最新报告解释了当前生成式 AI (GenAI) 模型在各种用例中的优势和劣势。了解GenAI在哪些方面表现出色,在哪些方面存在不足,可以对其在业务中的成功部署产生重大影响。

🟢 高效的用例:

➡️ 内容生成:GenAI 对于文本、图像和视频生成等任务非常有效。

➡️ 对话式用户界面:虚拟助手、聊天机器人和数字工作者从 GenAI 的功能中受益匪浅。

🟡 中等有效的用例:

➡️ 分段/分类:用于聚类、客户分段和对象分类。

➡️ 推荐系统:适用于个性化建议和推荐引擎。

🔴 最不有效的用例:

➡️ 预测/预测:GenAI 在风险预测、客户流失预测和销售/需求预测方面苦苦挣扎。

➡️ 决策智能:在决策支持、增强和自动化等领域存在不足。

这听起来可能与我的其他一些帖子相反 - 但请留在我身边!

👉 秘诀如下:

生成式 AI 只是更广泛的 AI 领域的一部分,大多数业务问题都需要结合不同的 AI 技术。

忽视这一事实,你就有可能高估GenAI的影响,并在无法提供预期结果的用例中实施该技术。

🔎 考虑其他 AI 技术:

◾ 对于GenAI未被评为“非常有用”的领域,请考虑其他AI技术。

◾ 要研究的常见已建立的 AI 技术包括非生成机器学习 (ML)、优化、模拟、规则/启发式和知识图谱。新兴技术,如因果人工智能、神经符号人工智能和第一性原理人工智能,也值得追踪。

◾ 在深入研究生成式 AI 之前,尝试更简单的替代 AI 技术可能是明智之举;它们通常风险较小、成本较低且更易于理解。

🔎 将 GenAI 模型与 AI 其他技术相结合

👉 GenAI 模型与其他 AI 技术的结合可能特别强大。这里仅举几个例子:

◾ 用于分割和分类、合成数据生成和计算机视觉的非生成式 ML 和 GenAI 模型

◾用于企业搜索的优化/搜索和 GenAI 模型

◾用于仿真加速的仿真和 GenAI 模型

◾用于知识管理和检索增强生成的图形和 GenAI 模型

◾用于聊天机器人和机器人顾问的基于规则的系统和 GenAI 模型



hrbank
Human capital / information and services (人力资本资讯及服务)
 最新文章