Angew. Chem. Int. Ed. 2025, e202418707.
第一作者:Yujian Sun
通讯作者:Lina Wang, Qiang Bai, Zhiling Zhu, Ning Sui
通讯单位:青岛科技大学
DOI:10.1002/anie.202418707
青岛科技大学隋凝/朱之灵/白强发现,在铜纳米颗粒(Cu NPs)表面原位生长石墨炔(graphdiyne, GDY),与石墨烯(graphene, G)共同形成夹层三维结构纳米酶(G/Cu/GDY)可以有效解决传统纳米酶的催化效率仍显著低于自然酶的问题。在该研究中,将新型的二维周期性材料GDY用来模拟天然酶的辅因子。一方面,GDY的高表面积和分层结构使得配体的选择超越了分子配体的限制,实现了天然酶三维几何结构的仿生构建。另一方面,GDY支架与金属纳米粒子之间的d-π相互作用消除了双金属原子轴向堆积的需要,简化了纳米酶构建LEF时对活性中心和合成的要求,同时GDY支架内多个sp键的存在进一步增强了局部不对称电场,并模拟了更大范围的LEF,加速底物与纳米酶之间的电子转移,有效地模拟了天然酶的电子行为。这种具有三维结构的纳米酶表现高效的类漆酶活性,其比活性显著提高到82.53 × 10⁻⁴ U/mg,是天然漆酶活性的 4.72 倍,并在环境污染检测与治理中的表现出巨大的实际应用潜力。
这项工作中,我们首次提出了一种利用石墨炔辅助构建具有几何和电子结构纳米酶的通用仿生策略,制备出的G/Cu/GDY三维纳米酶表现出优秀的类漆酶活性,实现了对天然漆酶的仿生模拟。通过紫外光谱实验我们研究了其漆酶活性,这种具有三维结构的 G/Cu/GDY类漆酶纳米酶比活性达到82.53 × 10⁻⁴ U mg-1,是天然漆酶的4.72倍,证明了构建轴向电子不对称策略在提高纳米类酶活性中的巨大潜力。而密度泛函理论(DFT)计算证明了石墨炔能够调节活性中心与O2之间的电子排布,改善氧气的吸附和脱附过程并降低反应能垒,从而加快反应速率。此外,本研究实现了真实水中污染物的快速检测,并表现出对微塑料高效降解的巨大潜力。
Figure 1. Synthesis and characterization of G/Cu/GDY nanozyme. (a) Schematic illustration of the synthesis of G/Cu/GDY and the image of final product. (b) Transmission electron microscopy (TEM) image of G/Cu/GDY. (c) High-magnification TEM image of G/Cu/GDY. (d) High-resolution TEM image (HRTEM) of G/Cu/GDY. (e) Energy-dispersive X-ray spectroscopy (EDS) elemental spectrum of G/Cu/GDY. (f) X-ray diffraction (XRD) patterns of G/Cu/GDY and G/Cu. (g) Raman spectra of G/Cu/GDY and G/Cu. (h) Particle size distribution of G/Cu/GDY. (i) X-ray photoelectron spectroscopy (XPS) survey spectra of G/Cu/GDY and G/Cu. (j) XPS C 1s spectra of G/Cu/GDY and G/Cu. (k) XPS Cu 2p spectra of G/Cu/GDY and G/Cu.
Figure 2. Construction of LEF in G/Cu/GDY nanozyme. (a) Schematic diagram of the structure of the G/Cu/GDY nanozyme. (b, c) Differential charge density maps of G/Cu/GDY from different perspectives. (d, e) Magnetization versus temperature curves for (d)G/Cu/GDY and (e)G/Cu, fitted according to Curie-Weiss law. Insets show the electron occupancy of t2g and eg anti-bonding orbitals. (f) X-ray absorption near-edge structure (XANES) spectra for G/Cu/GDY, G/Cu, CuO, Cu2O, and Cu foil. (g) Fourier-transform extended X-ray absorption fine structure (FT-EXAFS) spectra for G/Cu/GDY, G/Cu, CuO, Cu2O, and Cu foil. (h−j) EXAFS quantitative curve fitting analysis for (h) Cu foil, (i) G/Cu, and (j) G/Cu/GDY. (k−o) Wavelet-transform EXAFS (WT-EXAFS) contour plots for (k) Cu foil, (l) CuO, (m) Cu₂O, (n) G/Cu, and (o) G/Cu/GDY.
Figure 3. Laccase-like activity of G/Cu/GDY nanozyme. (a) Schematic diagram illustrating the colorimetric reaction mechanism of 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP). (b) UV-Vis spectra and color changes of the 4-AP, 2,4-DP, and 4-AP + 2,4-DP + G/Cu/GDY systems. The appearance of a distinct absorption peak at 510 nm and the color change from colorless to wine-red indicate the laccase-like activity of G/Cu/GDY. (c) Comparison of laccase-like activity among different materials: G/GDY, G/Cu, Cu/GDY, and G/Cu/GDY. (d) Effect of varying concentrations of G/Cu/GDY on laccase-like activity. (e) Effect of varying concentrations of G/Cu on laccase-like activity. (f) Michaelis-Menten kinetic curves for G/Cu/GDY and G/Cu. (g) Lineweaver-Burk plots for G/Cu/GDY and G/Cu. (h) Relative activity comparison of G/Cu/GDY, G/Cu, and natural laccase. Values represent mean ± standard deviation (S.D.), n = 3. *P < 0.05, **P < 0.01, ***P < 0.001.
Figure 4. Laccase mimetic mechanism of G/Cu/GDY nanozyme. (a) Schematic illustration of the G/Cu/GDY nanozymes catalyzed reaction process. (b) DMPO/O2•⁻ EPR spectra and (c) DMPO/•OH EPR spectra for the G/Cu/GDY system. The system containing only 2,4-DP and G/Cu/GDY was used as a control, with values reported as mean ± standard deviation, n = 3. (d) Comparison of the adsorption energies of oxygen on G/Cu/GDY, G/Cu/G, and G/Cu. (e) and (f) Differential charge density plots for G/Cu and G/Cu/GDY. (g) PDOS plots for G/Cu/GDY and G/Cu. (h) In situ infrared spectroscopy of G/Cu/GDY. (i) Gibbs free energy diagram of the catalytic processes of G/Cu/GDY and G/Cu nanozymes.
Figure 5. Electrochemical detection of hydroquinone. (a) CV curves of bare GCE, Cu/GDY, G/Cu/GDY, and G/Cu in 5.0 mM [Fe(CN)6]3-/[Fe(CN)6]4- solution containing 0.1 M KCl. (b) CV cyclic curves of G/Cu/GDY at scan rates ranging from 20 to 100 mV s-¹. (c) Impedance plots for different materials. (d) DPV curves for the detection of 20 µM hydroquinone on various modified electrodes in pH 7 PBS buffer. (e) CV curves of the G/Cu/GDY modified electrode in pH 7 PBS buffer containing 20 µM hydroquinone at different scan rates, with the inset showing the linear relationship between the redox peak current and the square root of the scan rate. (f) DPV curves for hydroquinone detection using the G/Cu/GDY modified electrode. (g) Reproducibility of hydroquinone detection with the G/Cu/GDY modified electrode. (h) Selectivity of G/Cu/GDY for hydroquinone, catechol and resorcinol. detection. (i) Stability of G/Cu/GDY. (j) Schematic diagram of practical application detection. (k) Real-time I−t curve for hydroquinone detection. Values represent mean ± standard deviation (S.D.), n = 3. *P < 0.05, **P < 0.01, ***P < 0.001.
Figure 6. Catalytic degradation of microplastics by G/Cu/GDY. Degradation of polyethylene by G/Cu/GDY, G/Cu, and natural laccase under (a) different reaction times and (b) various temperatures and conditions. (c) Total organic carbon (TOC) values in the residual solution at different reaction times. The experiment was repeated three times and the optimal results were taken and displayed in the figure. (d) Gel permeation chromatography (GPC) of polyethylene degradation. (e) Fourier transform infrared (FT-IR) spectra of products after polyethylene degradation at 90 °C, pH 6, 20 hours. (f) Magnified FTIR spectra. (g−i) SEM images of microplastics after reaction times of (g) 2 h, (h) 8 h, and (i) 20 h. (j) Roadmap of the LDPE degradation catalyzed by G/Cu/GDY.
总之,本研究提出了一种在纳米酶中以生物模拟方式构建三维几何和电子结构的简单方法。这种方法解决了传统三维结构纳米酶所面临的挑战,传统纳米酶受限于单原子纳米酶的复杂性和困难的制造工艺。理论计算和原位实验证实,GDY 通过sp-C和Cu d轨道之间的轨道杂化促进了Cu NPs表面电子的调制,这在底物分解过程中协调Cu NPs和O2之间的电子分布方面起着至关重要的作用,增强了向O2反键轨道的电子转移。这促进了O-O键的裂解和H2O的解吸,使类似于漆酶的活性显著提高到82.53 × 10⁻⁴ U/mg,是天然漆酶活性的 4.72 倍,并展示了其在环境污染检测与治理中的实际应用潜力。未来纳米酶三维结构设计应朝着更高效、更通用和更环保的方向发展,通过引入更多的电子耦合机制,实现对局部电场的精准调控。其次,基于模块化设计的思路,可以开发适用于多种酶模拟需求的通用纳米结构模板,降低合成成本并简化工艺。此外,将纳米酶设计与可持续性目标结合,如高温条件下的塑料降解与循环使用,将拓宽其在环境保护中的应用范围。最终,这些改进将推动人工酶从实验室向工业生产的转化,为绿色化学和生物工程领域带来革命性突破。
Yujian Sun,Chenguang Wang, Haoxin Li, Kai Wang, Prof. Dr. Qiang Bai, Guoli Zhang, Shuishui Feng, Prof. Dr. Lina Wang, Prof. Dr. Zhiling Zhu, Dr. Ning Sui, sp Carbon Disrupting Axial Symmetry of Local Electric Field for Biomimetic Construction of Three-Dimensional Geometric and Electronic Structure in Nanozyme for Sensing and Microplastic Degradation, Angew. Chem. Int. Ed. 2025, e202418707. https://doi.org/10.1002/anie.202418707
声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!
邮箱:Environ2022@163.com
欢迎大家将《水处理文献速递》加为星标
即时获取前沿学术成果
若有帮助,请点击“在看”分享!
投稿、转载请扫描下方二维码联系小编吧