新加坡国立大学John Wang院士团队:异核双原子非对称极化调控d-p杂化增强锂硫电池双向的硫氧化还原动力学

学术   2024-12-13 09:02   上海  


电催化讨论群-1:529627044 
一、研究背景:

锂硫电池由于其高比能量(2600 Wh kg-1)和硫资源的丰富性,成为下一代可充电能源存储系统的有力候选。然而,锂硫电池在实际应用中面临多重问题,包括硫和Li2S的电绝缘性、充放电过程中体积膨胀(约80%)、锂多硫化物(LiPSs)的迁移效应和硫氧还原反应(SRR)动力学的慢速性等。这些问题限制了锂硫电池的实际应用和性能提升。

为了解决这些问题,研究者们专注于开发新型电催化剂来改善SRR动力学和硫的利用率。单原子催化剂(SACs)和双原子催化剂(DACs)作为新兴的电催化剂类型,展示了较好的性能,特别是双原子催化剂(DACs)在优化中间体吸附、突破吸附能量标度关系(SRL)方面表现出色。然而,传统的双原子催化剂的催化机制和在锂硫电池中的应用仍不清楚,因此,本文提出并研究了异核CoFe双原子催化剂(CoFe DACs),旨在通过调节异核双原子催化剂非对称极化的电子结构,提升锂硫电池的性能。

通讯作者:新加坡国立大学John Wang教授、沈磊高级讲师、新加坡科技局高性能计算研究所Yong-Wei Zhang教授、山东大学宋克鹏研究员。

二、研究内容

这篇文章介绍了异核CoFe双原子催化剂(DACs),通过利用其独特的非对称几何和电子构型,解决了锂硫电池(LiSBs)中硫还原反应(SRR)的动力学限制。研究发现,CoFe双原子催化剂能够有效加速Li2S2Li2S的双向固-固转化以及Li2S分解的逆反应,显著提升了硫的利用效率和SRR动力学。在该催化剂中,Co原子的引入打破了Fe-3d轨道的局域化,提高了电子自旋态,从而提供了更多的空轨道,有助于SRR过程的进行。通过密度泛函理论(DFT)和态密度(DOS)分析,揭示了Fed带中心比Co更接近费米能级,导致Fe与吸附物种之间的反键态占据较低。这种电子结构的差异使得吸附倾向非对称地偏向Fe原子,进一步调节了电子轨道的杂化,削弱了Li-S键,促进了Li2S的分解。更为重要的是,研究还发现Li2SFe原子上的单位点吸附行为,这种单双位点吸附模式的灵活切换显著降低了SRR的能量壁垒,从而提高了硫的利用率和双向的氧化还原动力学。


Material Synthesis and Characterization.
Figure 1. a) XRD pattern, b) Raman spectra, and c) Co and Fe 2p XPS spectra of CoFe DACs. d) Co and Fe K-edge XANES, e) FT-EXAFS spectra, f) FT-EXAFS fitting curves in R spaces, g) wavelet transform images of k2-weighted EXAFS of DACs, h) HAADF-STEM image, and i) corresponding line-scanning intensity profiles obtained on the zoomed areas in panel h for two bimetallic Co-Fe sites. j) Statistical Co-Fe distance in the observed diatomic pairs. k) CoFe DACs structure analyzed by EELS.

Electrochemical Performance of Lithium Sulfur Batteries.

Figure 2.a) CV profiles of LiSBs. b) GCD profiles at 1 C. c) Rate performance of LiSBs cells. d, e) Long-term cycling performance at 1 C and 3 C, respectively. f) DFT calculations of charge-density difference plots for Li2S8, Li2S4, Li2S intermediates interacting with CoFe DACs from top and side views. The yellow (blue) distribution corresponds to charge accumulation (depletion). g) Free-energy diagram of different DACs for SRR (the inset depicts the optimized geometries of LiPSs adsorbed on CoFe DACs).

Sulfur Redox Kinetics Mechanism.

Figure 3.a) CV profiles of CoFe DACs across 1.7–3.0 V at various sweep rates. b) Linear correlation between peak current and square root sweep rate for the redox peak. c) NTR values at diverse sweep rates. d-f) Potentiostatic discharge profiles for Li2S precipitation. g) Potentiostatic charge profiles for Li2S dissociation. h) Tafel plots for symmetric cells, sweeping from -0.1 to 0.1 V at 0.1 mV s-1. i) CV profiles for symmetric cells in 0.25 M Li2S8 electrolyte at 1 mV s-1.

Asymmetric Charge Distribution and Orbital Hybridization.

Figure 4. Projected density of states of (a) Co and (b) Fe in CoFe DACs and their hybridization with Li2S in (c) mono-adsorption configuration and (d) dual-adsorption configuration.

Figure 5. -COHP diagram of (a) Co-S and (b) Fe-S bond in spin up orbital and spin down orbital as well as Li-S bond in (c) spin up orbital and (d) spin down orbital. -ICOHP values of (e) Fe-S/Co-S bonds and (f) Li-S bonds. (g) Li2S decomposition barriers on FeFe, CoFe, CoCo DACs. (h) Schematic of the formation of Fe/Co-S bonds. EF represents the Fermi level. (i) The mechanism diagram illustrating the dynamic switching between mono and dual adsorption sites.

文章链接:
Asymmetric Polarization Modulation of d–p Hybridization-Enhanced Bidirectional Sulfur Redox Kinetics with Heteronuclear Dual-Atom Catalysts

https://pubs.acs.org/doi/10.1021/acsnano.4c09637.

电催化讨论群-1:529627044 

光催化群-2:927909706 

均相催化与酶催化群-2:929342001 

纳米催化群-1:256363607 

多孔材料群-2:813094255 
理论计算群-2:863569400 




催化计
我为催化狂!
 最新文章