关注公众号,点击公众号主页右上角“ · · · ”,设置星标,实时关注汽车半导体最新资讯
在先进封装领域中,无论是2.5D封装中的interposer 还是3D封装中都要用到TSV,但是最近很多人都听说玻璃通孔(Through Glass Via,TGV)这个词。玻璃通孔(TGV)潜能巨大,未来可能将是先进封装技术中的常客。本文将简要描述玻璃通孔(TGV)在先进封装的应用及发展趋势以及工艺简介。
玻璃基板是下一代芯片基板,核心材料由玻璃制成。玻璃基板封装关键技术为TGV。玻璃基板产业链包括生产、原料、设备、
技术、封装、检测、应用等环节,上游为生产、原料、设备环节。因独特的物理化学属性,玻璃基板在电子元件材料应用领域展现出巨大潜力。为追求推进摩尔定律极限,英特尔、三星、英伟达、台积电等大厂入局玻璃基板。英特尔率先推
出用于先进封装的玻璃基板,推动摩尔定律进步。2023年7月,一名英特尔工程师在位于亚利桑那州Chandler的英特尔组装与测试技术开发工厂拿着测试玻璃核心基板面板。(图片来源:英特尔公司)三星将玻璃基板视为芯片封装的未来,组建“军团”加码研发玻璃基板。英伟达的GB200或将使用玻璃基板,并计划投产。台积电已组建专门的团队探索FOPLP技术,并大力投资玻璃基板研发。全球IC封装基板市场快速发展,预计2029年规模达315.4亿美。玻璃基板为最新趋势,预计5年内 渗透率达50%以上。全球玻璃基板市场空间广阔,2031年预计增长至113亿美元。中国玻璃基板市场规模不断扩大,2023年达333亿元。康宁占全球市场主导地位,份额占比48%。国内厂商成本优势显著,玻璃基板国产化提速,市场空间巨大。在2024年下半年,TGV企业布局有加速现象!玻璃通孔(Through-Glass Via, TGV)互连技术最早可追溯至2008年, 衍生于2.5D/3D集成TSV转接板技术, 主要用来解决TSV转接板由于硅衬底损耗带来高频或高速信号传输特性退化、材料成本高与工艺复杂等问题。近年来技术日趋完善。各家头部公司开始布局,并生产出一些样品应用于不同的领域包括:传感器,CPU,GPU,AI,显示面板,医疗器械,半导体先进封装等。玻璃通孔(TGV)和硅通孔(TSV)工艺相比TGV的优势主要体现在:1)优良的高频电学特性。玻璃材料是一种绝缘体材料,介电常数只有硅材料的1/3左右,损耗因子比硅材料低2-3个数量级,使得衬底损耗和寄生效应大大减小,保证了传输信号的完整性;2)大尺寸超薄玻璃衬底易于获取。Corning、Asahi以及SCHOTT等玻璃厂商可以提供超大尺寸(>2m × 2m)和超薄(<50µm)的面板玻璃以及超薄柔性玻璃材料。3)低成本。受益于大尺寸超薄面板玻璃易于获取,以及不需要沉积绝缘层,玻璃转接板的制作成本大约只有硅基转接板的1/8;4)工艺流程简单。不需要在衬底表面及TGV内壁沉积绝缘层,且超薄转接板中不需要减薄;5)机械稳定性强。即便当转接板厚度小于100µm时,翘曲依然较小;6)应用领域广泛,是一种应用于晶圆级封装领域的新兴纵向互连技术,为实现芯片-芯片之间距离最短、间距最小的互联提供了一种新型技术途径,具有优良的电学、热学、力学性能,在射频芯片、高端MEMS传感器、高密度系统集成等领域具有独特优势,是下一代5G、6G高频芯片3D封装的首选之一。
图1,(a) 准备玻璃晶圆,(b)形成TGV,(c)PVD阻挡层,种子层,双面电镀-沉积铜,(d)退火及CMP化学机械抛光,去表面铜层,(e)PVD镀膜及光刻,(f)布置RDL重布线层,(g)去胶及Cu/Ti 刻蚀,(h)形成钝化层(介电层)。首先,来料检测,制作玻璃通孔(TGV)。TGV 的成孔工艺主要包括喷砂、超声波钻孔、湿法刻蚀、深反应离子刻蚀、光敏刻蚀、激光刻蚀、激光诱导深度刻蚀以及聚焦放电成孔等。孔形成后,需要检测,清洗;图2普通激光钻孔工艺与激光诱导深度刻蚀工艺对比(图片来源:LPKF)采用等离子Plasma蚀刻形成通孔(图片来源:友威科技)孔形成后,要对孔进行检测,如通孔率,异物,面板缺陷等1:通孔率 - 漏点以及不通。孔径大小:规格-10/30/50/70/100,外径需要比内径的比例大于60%以上。缺陷判断标准:面积;真圆度(95%卡控);直径(±5um)。 2:孔内异物:有无,看通断,玻璃渣,碳纤维,胶类,粉尘。 3:面板缺陷:裂纹,ETCH不良(凹坑),赃物,划痕。其次,通过物理气相沉积(PVD)的方法在玻璃通孔内部沉积阻挡层,种子层;最后,通过临时键合,背面研磨、化学机械抛光(CMP)露铜,解键合,形成玻璃通孔(TGV)工艺技术金属填实转接板。过程中,也需要清洗,检测等半导体工艺。
来源:艾邦半导体网
【免责声明】文章为作者独立观点,不代表汽车半导体立场。如因作品内容、版权等存在问题,请于本文刊发30日内联系汽车半导体进行删除或洽谈版权使用事宜。