内容标签:NAC
科学审查:朱倩妮 译稿:华珏琴
责编:过凌洋 内容校对:过红兴
如果您已经接触补剂一段时间,您肯定听说过谷胱甘肽(GSH),我们称之为人体的主要抗氧化剂。
我们说 GSH 是抗氧化剂之王,是因为它是人体内最丰富[1]且最强大的抗氧化剂之一[2] 但这种化合物最棒的地方在于,人体可以自行产生谷胱甘肽[1]。
作为天然抗氧化防御系统的一部分。 GSH 水平是影响整体健康的关键因素。在人类身上进行受控的长寿研究极其困难,但对简单生物的研究不言而喻。
例如,对酿酒酵母(也称为啤酒酵母)的研究一致表明,GSH 水平较高的生物比 GSH 水平较低的生物寿命长得多。在人类中,GSH 耗竭与痴呆症[3,4]、糖尿病和肥胖症等严重疾病的发生有关。 [5,6]
问题:口服谷胱甘肽效果不佳
问题是,直接补充谷胱甘肽已被证明是一项相当困难的任务。研究发现,口服GSH 补充剂的生物利用度很差,因此不可能通过吞服纯 GSH 来提高血液中的 GSH 水平。[7]
为了评估补充口服谷胱甘肽的可行性,我们确定了 7 名健康志愿者的全身谷胱甘肽利用率。血浆中谷胱甘肽、半胱氨酸和谷氨酸的基础浓度分别为6.2、8.3和54 μmol·l −1 。在以0.15 mmol·kg −1剂量施用谷胱甘肽后的270分钟内,血浆中谷胱甘肽、半胱氨酸和谷氨酸的浓度没有明显升高,这表明谷胱甘肽在人体中的全身利用率可以忽略不计。
由于谷胱甘肽被肠道和肝脏的 γ-谷氨酰转移酶水解,膳食谷胱甘肽不是循环谷胱甘肽的主要决定因素,并且不可能通过口服单剂量 3 克谷胱甘肽将循环谷胱甘肽增加到临床有益的程度。[7]
那么特殊的 GSH 补充剂怎么样?
多年来,制造商已经开发出特殊的 GSH 制剂和化合物,他们声称他们的工艺可以提高抗氧化剂的口服生物利用度。
虽然我们确实认为其中一些 GSH 制剂可能对大多数人有效,但高成本是一个大问题。
解决方案:补充 GSH 前体 (NAC)
目标分子的生物利用度低是补充剂科学中常见的问题。解决这一问题的最佳方法通常是服用该分子的前体。通常,它们的生物利用度比目标分子本身高得多。
幸运的是,对于 GSH 来说,这绝对是一个可行的解决方案。研究一致表明,补充 GSH 前体(如半胱氨酸和甘氨酸)可以大大帮助 GSH 耗尽的人恢复正常水平。[6,8]
当我们进行研究时我们会发现,如果您的目标是提高 GSH 的产量,那么N-乙酰半胱氨酸(NAC) 是您可以服用的最佳补充剂之一。
N-乙酰半胱氨酸研究
一旦你了解了 GSH 在体内的作用,就很容易明白,你的健康很大程度上取决于保持 GSH 的生成量处于适当水平。同样,它是体内最强大、最普遍的抗氧化剂,这意味着它几乎用于所有代谢过程。
失控的氧化应激与快速衰老和重大疾病的发生有关,包括癌症、心血管疾病、呼吸系统疾病、类风湿性关节炎、肾脏疾病和性功能障碍。[9]
氧化应激和炎症之间存在双向关系。氧化应激会使炎症恶化,炎症也会使氧化应激恶化。[10,11]
由于慢性全身炎症基本上会损害身体的每个组织,因此 GSH 耗竭可能造成的灾难性后果显而易见。
当然,这也是我们在引言中讨论的 GSH 耗竭与代谢和神经系统疾病之间联系的关键机制。
因此,如果您读到以下研究时认为 NAC 好得令人难以置信,请记住,我们正在处理一种对人类健康和表现非常基本的机制——氧化应激和炎症的管理。这在很大程度上解释了 NAC 在改善人类健康方面的非凡潜力。[12]
最重要的是:NAC 可以改善肝功能和解毒功能
在一项特别有趣的研究中,研究人员选取了一群表现出饮酒偏好的老鼠(基本上就是酒鬼老鼠),并给它们补充了 NAC。与未补充 NAC 的老鼠相比,接受 NAC 治疗的老鼠在获得任意数量的酒精时,会自发减少 65% 的饮酒量。 [17]
换句话说,服用 NAC 并不意味着可以随心所欲地喝酒。有证据表明,它可以显著减少但不能完全预防酒精引起的肝损伤。
在一项研究中,使用 NAC 治疗后,饮酒大鼠的肝酶水平降低了约 36% - 但即使是服用 NAC 的酒精大鼠,其肝酶水平也比仅服用 NAC 的大鼠高出 37%。[21] EtOH 是乙醇的缩写。
那么它的效果如何?在我们刚刚提到的研究中,服用 NAC 和酒精的大鼠的丙氨酸转氨酶 (ALT) 水平约为172 ,而只服用酒精的大鼠的丙氨酸转氨酶 (ALT)水平约为267 ,服用 NAC但不服用酒精的大鼠的丙氨酸转氨酶 (ALT) 水平为 126。
因此,即使您在饮酒时服用 NAC,这项研究预测您的肝酶血液水平仍会显著升高。
NAC 能对抗宿醉吗?它对乙醛脱氢酶 (ALDH) 酶的影响
NAC 能够增强人体抵抗酗酒危害的能力,部分原因在于它对乙醛脱氢酶(ALDH) 的作用,这种酶负责解毒人体代谢酒精时产生的醛。 [22]这些醛代谢物毒性极大,越早消除它们越好。
好消息是,至少有一项动物研究表明,NAC可以显著上调 ALDH 活性。[23]
关于这个主题的研究肯定不多,所以现在很难得出明确的结论。但考虑到 NAC 对整体肝脏健康和功能的积极影响,我们一点也不会惊讶于 ALDH 和 ADH(酒精脱氢酶,将酒精转化为醛的酶)的显著上调。
NAC的神经益处
NAC 对呼吸系统的益处
NAC 的促生育作用
NAC 的抗糖尿病作用
炎症和氧化应激在胰岛素抵抗、代谢综合征和 2 型糖尿病 (T2D) 的发生中也起着重要作用。 [44]正如我们在引言中提到的,GSH 耗竭是代谢功能障碍的一个特征,并且在患有严重 T2D 的患者中持续存在。[5,6]
尽管 NAC 似乎无法改善现有 2 型糖尿病患者的症状,[45] 但动物研究表明,它可以通过使血糖正常化和减少炎症来帮助预防糖尿病的发生。 [46,47]
NAC 的心脏保护作用
研究还显示 NAC 能增加人体一氧化氮(NO)的生成,一氧化氮是由动脉细胞产生的气态分子,可引起血管舒张,即血管扩张,从而改善血液循环,导致血压和静息心率下降。[48]
一氧化氮的工作原理(图片由 SuperSpinach 提供)
由于 NO 活性降低是心血管疾病 (CVD) 的一个特征,[49]这可能有助于预防或改善 CVD 的症状。
NAC 可增强免疫力
NAC可改善肠道健康
慢性炎症是许多肠道疾病的基础,包括肠道渗透性或肠漏,这是发生桥本氏等自身免疫性疾病必须存在的三个因素之一。肠漏涉及对身体肠道内壁的损害,并导致紧密连接故障,这使得不打算穿过肠壁的细菌和食物颗粒等物质能够通过。[52]
研究表明,NAC通过产生信号收紧肠壁内的连接(或“空间”)来改善肠道组织损伤,就像肠道泄漏时一样。这反过来又修补了肠道泄漏的“泄漏”。
当肠道组织损伤愈合,肠道泄漏被逆转时,许多人甚至可能能够缓解他们的桥本![52]
NAC还可以通过帮助肠道细菌排毒和分解生物膜来促进肠道健康。生物膜是微生物的集合体,生长在生物表面,通常容纳肠道病原体,这反过来又会导致感染。今天,许多生物膜正在对许多临床抗菌治疗和宿主免疫反应产生抗药性,因此研究人员正在寻找新的物质来对抗这些耐药性生物膜。[52]
2014年的一项研究调查了NAC在防止生物膜形成以及销毁现有生物膜方面的有效性。研究发现,与不同的抗生素相结合,NAC可以显著穿透最深的细菌生物膜层,这些细菌对经典抗菌治疗的耐药性越来越强。[52]
NAC缺乏的可能性
NAC(乙酰半胱氨酸)在食物中并不存在,但其前体半胱氨酸存在于高蛋白食物中。虽然人体内NAC不足尚未被明确定义,但艾滋病患者体内可能存在NAC水平偏低的情况。
与营养和食物的关系
目前,尚未有NAC与其他食物或化合物相互作用的报告。有研究建议,NAC可能会增加锌和铜的排泄,但其影响微小。然而,长期摄入NAC时,适量补充锌和铜,或复合矿物质,可能是明智的选择。
与药物的相互作用
NAC可以提高硝酸甘油的疗效,但可能引发严重的头痛。如果需要同时使用这两种物质,建议在医生指导下进行。
过敏与抗凝血作用
少数人可能对NAC过敏,使用前应谨慎,或遵医嘱。此外,NAC可能延缓凝血,因此患有出血性疾病的患者应慎用,或在医生的建议下使用。
安全注意事项
按照推荐剂量使用,NAC是安全的。然而,个别人可能会出现恶心、呕吐、头痛、口干和便秘等不良反应。孕妇口服NAC通常是安全的,但如果没有必要,不建议服用,或应遵医嘱。由于NAC在哺乳期的安全性尚不明确,不建议哺乳期妇女使用,或应遵医嘱。
参考文献:
Richie, John P Jr et al. “Randomized controlled trial of oral glutathione supplementation on body stores of glutathione.” European journal of nutrition vol. 54,2 (2015): 251-63. doi:10.1007/s00394-014-0706-z https://dx.doi.org/10.1007/s00394-014-0706-z Exner, R et al. “Therapeutic potential of glutathione.” Wiener klinische Wochenschrift vol. 112,14 (2000): 610-6. Chen, Jinghan Jenny, et al. “Altered Central and Blood Glutathione in Alzheimer’s Disease and Mild Cognitive Impairment: A Meta-Analysis.” Alzheimer’s Research & Therapy, vol. 14, no. 1, 5 Feb. 2022, p. 23, pubmed.ncbi.nlm.nih.gov/35123548/, 10.1186/s13195-022-00961-5 https://alzres.biomedcentral.com/articles/10.1186/s13195-022-00961-5 Mandal, Pravat K et al. “Cognitive Improvement with Glutathione Supplement in Alzheimer’s Disease: A Way Forward.” Journal of Alzheimer’s disease : JAD vol. 68,2 (2019): 531-535. doi:10.3233/JAD-181054 Lutchmansingh, Fallon K et al. “Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia.” PloS one vol. 13,6 e0198626. 7 Jun. 2018, doi:10.1371/journal.pone.0198626 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991679/ Sekhar, Rajagopal V et al. “Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine.” Diabetes care vol. 34,1 (2011): 162-7. doi:10.2337/dc10-1006 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005481/ Witschi, A et al. “The systemic availability of oral glutathione.” European journal of clinical pharmacology vol. 43,6 (1992): 667-9. doi:10.1007/BF02284971 https://dx.doi.org/10.1007/BF02284971 Schmitt, Bernard et al. “Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: A comparative crossover study.” Redox biology vol. 6 (2015): 198-205. doi:10.1016/j.redox.2015.07.012 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536296/ Pizzino, Gabriele et al. “Oxidative Stress: Harms and Benefits for Human Health.” Oxidative medicine and cellular longevity vol. 2017 (2017): 8416763. doi:10.1155/2017/8416763 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551541/ Lugrin, Jérôme et al. “The role of oxidative stress during inflammatory processes.” Biological chemistry vol. 395,2 (2014): 203-30. doi:10.1515/hsz-2013-0241 https://www.degruyter.com/document/doi/10.1515/hsz-2013-0241 Khansari, Nemat et al. “Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer.” Recent patents on inflammation & allergy drug discovery vol. 3,1 (2009): 73-80. doi:10.2174/187221309787158371 https://www.eurekaselect.com/930895/article Mokhtari, Vida et al. “A Review on Various Uses of N-Acetyl Cysteine.” Cell journal vol. 19,1 (2017): 11-17. doi:10.22074/cellj.2016.4872; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241507/ Aydin, Seval, et al. “N-Acetylcysteine Reduced the Effect of Ethanol on Antioxidant System in Rat Plasma and Brain Tissue.” The Tohoku Journal of Experimental Medicine, vol. 198, no. 2, 2002, pp. 71–77, 10.1620/tjem.198.71; https://pubmed.ncbi.nlm.nih.gov/12512991/ Ozaras, Resat, et al. “N-Acetylcysteine Attenuates Alcohol-Induced Oxidative Stress in the Rat.” World Journal of Gastroenterology, vol. 9, no. 1, 2003, p. 125, 10.3748/wjg.v9.i1.125; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728225/ Ozaras, Resat et al. “N-acetylcysteine attenuates alcohol-induced oxidative stress in the rat.” World journal of gastroenterology vol. 9,1 (2003): 125-8. doi:10.3748/wjg.v9.i1.125 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728225/ “Elevated Liver Enzymes.” Mayo Clinic, 2018, www.mayoclinic.org/symptoms/elevated-liver-enzymes/basics/definition/sym-20050830 Quintanilla, María Elena et al. “N-Acetylcysteine and Acetylsalicylic Acid Inhibit Alcohol Consumption by Different Mechanisms: Combined Protection.” Frontiers in behavioral neuroscience vol. 14 122. 31 Jul. 2020, doi:10.3389/fnbeh.2020.00122 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/32848653/ Morley, Kirsten C et al. “N-acetyl cysteine in the treatment of alcohol use disorder in patients with liver disease: Rationale for further research.” Expert opinion on investigational drugs vol. 27,8 (2018): 667-675. doi:10.1080/13543784.2018.1501471 https://www.tandfonline.com/doi/full/10.1080/13543784.2018.1501471 Nguyen-Khac, Eric, et al. “Glucocorticoids PlusN-Acetylcysteine in Severe Alcoholic Hepatitis.” New England Journal of Medicine, vol. 365, no. 19, 10 Nov. 2011, pp. 1781–1789, 10.1056/nejmoa1101214. https://www.nejm.org/doi/full/10.1056/nejmoa1101214 El-Serafi, Ibrahim et al. “The effect of N-acetyl-l-cysteine (NAC) on liver toxicity and clinical outcome after hematopoietic stem cell transplantation.” Scientific reports vol. 8,1 8293. 29 May. 2018, doi:10.1038/s41598-018-26033-z https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/29844459/ Ronis, Martin J J et al. “Effects of N-acetylcysteine on ethanol-induced hepatotoxicity in rats fed via total enteral nutrition.” Free radical biology & medicine vol. 39,5 (2005): 619-30. doi:10.1016/j.freeradbiomed.2005.04.011 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956427/#!po=31.2500 Ehrig, T et al. “Alcohol and aldehyde dehydrogenase.” Alcohol and alcoholism (Oxford, Oxfordshire) vol. 25,2-3 (1990): 105-16. doi:10.1093/oxfordjournals.alcalc.a044985 https://academic.oup.com/alcalc/article-lookup/doi/10.1093/oxfordjournals.alcalc.a044985 Wang, Jiali et al. “Inhibition of aldehyde dehydrogenase 2 by oxidative stress is associated with cardiac dysfunction in diabetic rats.” Molecular medicine (Cambridge, Mass.) vol. 17,3-4 (2011): 172-9. doi:10.2119/molmed.2010.00114 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060979/ Dean, Olivia et al. “N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action.” Journal of psychiatry & neuroscience : JPN vol. 36,2 (2011): 78-86. doi:10.1503/jpn.100057 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044191/ Ambrogini, Patrizia et al. “Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E.” Biochimica et biophysica acta. Molecular basis of disease vol. 1865,6 (2019): 1098-1112. doi:10.1016/j.bbadis.2019.01.026 https://linkinghub.elsevier.com/retrieve/pii/S0925-4439(19)30032-8 Olloquequi, Jordi, et al. “Excitotoxicity in the Pathogenesis of Neurological and Psychiatric Disorders: Therapeutic Implications.” Journal of Psychopharmacology, vol. 32, no. 3, 15 Feb. 2018, pp. 265–275, 10.1177/0269881118754680. https://journals.sagepub.com/doi/10.1177/0269881118754680 Fernandes, Brisa S et al. “N-Acetylcysteine in depressive symptoms and functionality: a systematic review and meta-analysis.” The Journal of clinical psychiatry vol. 77,4 (2016): e457-66. doi:10.4088/JCP.15r09984 https://pubmed.ncbi.nlm.nih.gov/27137430/ Paydary, K et al. “N-acetylcysteine augmentation therapy for moderate-to-severe obsessive-compulsive disorder: randomized, double-blind, placebo-controlled trial.” Journal of clinical pharmacy and therapeutics vol. 41,2 (2016): 214-9. doi:10.1111/jcpt.12370 https://doi.org/10.1111/jcpt.12370 Pósfai, B et al. “Synaptic and cellular changes induced by the schizophrenia susceptibility gene G72 are rescued by N-acetylcysteine treatment.” Translational psychiatry vol. 6,5 e807. 10 May. 2016, doi:10.1038/tp.2016.74 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/27163208/ Gray, Kevin M et al. “N-acetylcysteine (NAC) in young marijuana users: an open-label pilot study.” The American journal on addictions vol. 19,2 (2010): 187-9. doi:10.1111/j.1521-0391.2009.00027.x https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826714/ Berk, Michael et al. “The promise of N-acetylcysteine in neuropsychiatry.” Trends in pharmacological sciences vol. 34,3 (2013): 167-77. doi:10.1016/j.tips.2013.01.001 https://linkinghub.elsevier.com/retrieve/pii/S0165-6147(13)00002-3 Zinellu, Elisabetta et al. “Glutathione Peroxidase in Stable Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-analysis.” Antioxidants (Basel, Switzerland) vol. 10,11 1745. 30 Oct. 2021, doi:10.3390/antiox10111745 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/34829616/ Beeh, K M et al. “Glutathione deficiency of the lower respiratory tract in patients with idiopathic pulmonary fibrosis.” The European respiratory journal vol. 19,6 (2002): 1119-23. doi:10.1183/09031936.02.00262402 https://pubmed.ncbi.nlm.nih.gov/12108866/ Roum, J H et al. “Systemic deficiency of glutathione in cystic fibrosis.” Journal of applied physiology (Bethesda, Md. : 1985) vol. 75,6 (1993): 2419-24. doi:10.1152/jappl.1993.75.6.2419 https://journals.physiology.org/doi/10.1152/jappl.1993.75.6.2419 Sanguinetti, Claudio M. “N-acetylcysteine in COPD: why, how, and when?.” Multidisciplinary respiratory medicine vol. 11 8. 3 Feb. 2016, doi:10.1186/s40248-016-0039-2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744393/ Stey, C., et al. “The Effect of Oral N-Acetylcysteine in Chronic Bronchitis: A Quantitative Systematic Review.” European Respiratory Journal, vol. 16, no. 2, 1 Aug. 2000, pp. 253–262 https://erj.ersjournals.com/content/16/2/253.short Izquierdo-Alonso, José Luis, et al. “N-Acetylcysteine for Prevention and Treatment of COVID-19: Current State of Evidence and Future Directions.” Journal of Infection and Public Health, vol. 15, no. 12, Dec. 2022, pp. 1477–1483, 10.1016/j.jiph.2022.11.009; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9651994/ Shi, Zhongcheng, and Carlos A Puyo. “N-Acetylcysteine to Combat COVID-19: An Evidence Review.” Therapeutics and Clinical Risk Management, vol. Volume 16, Nov. 2020, pp. 1047–1055, 10.2147/tcrm.s273700; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649937/ Çayan, Selahittin et al. “Effect of Varicocele and Its Treatment on Testosterone in Hypogonadal Men with Varicocele: Review of the Literature.” Balkan medical journal vol. 37,3 (2020): 121-124. doi:10.4274/balkanmedj.galenos.2020.2020.1.85 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/32070086/ Kupis, Łukasz et al. “Varicocele as a source of male infertility – current treatment techniques.” Central European journal of urology vol. 68,3 (2015): 365-70. doi:10.5173/ceju.2015.642 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643713/ Barekat, Foroogh et al. “A Preliminary Study: N-acetyl-L-cysteine Improves Semen Quality following Varicocelectomy.” International journal of fertility & sterility vol. 10,1 (2016): 120-6. doi:10.22074/ijfs.2016.4777 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845522/ Safarinejad, Mohammad Reza, and Shiva Safarinejad. “Efficacy of selenium and/or N-acetyl-cysteine for improving semen parameters in infertile men: a double-blind, placebo controlled, randomized study.” The Journal of urology vol. 181,2 (2009): 741-51. doi:10.1016/j.juro.2008.10.015 https://www.auajournals.org/doi/10.1016/j.juro.2008.10.015 Thakker, Divyesh et al. “N-acetylcysteine for polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled clinical trials.” Obstetrics and gynecology international vol. 2015 (2015): 817849. doi:10.1155/2015/817849 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306416/ Esser, Nathalie et al. “Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes.” Diabetes research and clinical practice vol. 105,2 (2014): 141-50. doi:10.1016/j.diabres.2014.04.006 https://linkinghub.elsevier.com/retrieve/pii/S0168-8227(14)00187-9 Szkudlinska, Magdalena A et al. “The antioxidant N-Acetylcysteine does not improve glucose tolerance or β-cell function in type 2 diabetes.” Journal of diabetes and its complications vol. 30,4 (2016): 618-22. doi:10.1016/j.jdiacomp.2016.02.003 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834245/ Ma, Yongjie et al. “N-acetylcysteine Protects Mice from High Fat Diet-induced Metabolic Disorders.” Pharmaceutical research vol. 33,8 (2016): 2033-42. doi:10.1007/s11095-016-1941-1 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/27161488/ Dludla, Phiwayinkosi V et al. “A Systematic Review on the Protective Effect of N-Acetyl Cysteine Against Diabetes-Associated Cardiovascular Complications.” American journal of cardiovascular drugs : drugs, devices, and other interventions vol. 18,4 (2018): 283-298. doi:10.1007/s40256-018-0275-2 https://dx.doi.org/10.1007/s40256-018-0275-2 Anfossi, G et al. “N-acetyl-L-cysteine exerts direct anti-aggregating effect on human platelets.” European journal of clinical investigation vol. 31,5 (2001): 452-61. doi:10.1046/j.1365-2362.2001.00815.x https://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm%3Apubmed&issn=0014-2972&date=2001&volume=31&issue=5&spage=452 Naseem, Khalid M. “The role of nitric oxide in cardiovascular diseases.” Molecular aspects of medicine vol. 26,1-2 (2005): 33-65. doi:10.1016/j.mam.2004.09.003 https://pubmed.ncbi.nlm.nih.gov/15722114/ Diotallevi, Marina et al. “Glutathione Fine-Tunes the Innate Immune Response toward Antiviral Pathways in a Macrophage Cell Line Independently of Its Antioxidant Properties.” Frontiers in immunology vol. 8 1239. 29 Sep. 2017, doi:10.3389/fimmu.2017.01239 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/29033950/ Rodrigues, Camila, and Susan Percival. “Immunomodulatory Effects of Glutathione, Garlic Derivatives, and Hydrogen Sulfide.” Nutrients, vol. 11, no. 2, 30 Jan. 2019, p. 295, 10.3390/nu11020295. Accessed 19 Mar. 2020. https://www.mdpi.com/2072-6643/11/2/295/htm Hildebrandt W, Alexander S, Bartsch P, Droge W. Effect of N-acetyl-cysteine on the hypoxic ventilatory response and erythropoietin production: linkage between plasma thiol redox state and O(2) chemosensitivity. Blood. 2002 Mar 1;99(5):1552-5. 86.Iturriaga R, Rey S, D
转载须知
标注‘原创’仅代表原创编译,本平台不主张对原文的版权。本平台转载仅仅是出于学术交流和传播信息的需要,并不意味着代表本平台观点或证实其内容的真实性;转载文章版权归原作者所有,作者如果不希望被转载或有侵权行为,请联系本平台删除。