本文适合进阶补剂爱好者
内容标签:Historic Labs®
审查:朱倩妮 译稿:陆佳颖
责编:过凌洋 校对:过红兴
一个有前途的新品牌诞生总是令人兴奋——尤其是当他们带来智慧和创新时。
Historic Labs是这个领域的新玩家,他们已经朝着正确的方向迈出了重要一步。首先,他们的品牌很独特,而且有全新的诠释。但他们的产品选择也很独特。
通常,当新品牌进入运动和运动营养领域时,他们会以运动前补剂作为开端。这就是 Historic Labs 的故事,但不同之处在于他们为我们带来了四款运动前补剂!
Historic Labs 推出四款运动前补剂
他们的原创健身前饮品Zeus以希腊为特色
Amun-Ra Non-Stim具有埃及传说
Thermogenic是一款燃脂运动前配方,源自中国
高刺激氮泵产品让消费者联想起玛雅人
Historic的ZeusHistoric Amun-Ra无咖啡因氮泵配方
Historic Amun-Ra 无咖啡因氮泵
对于那些对咖啡因引起的“兴奋感”不感兴趣的人,Historic 推出了不含兴奋剂的训练前补剂,包括 HydroPrime、GeniusPure 等:
L-瓜氨酸苹果酸盐 2:1(6000 毫克)
BetaPure 无水甜菜碱(2500 毫克)
HydroPrime® 甘油粉 (2000 毫克) *
Nitrosigine®(精氨酸硅酸盐肌醇) (1500 毫克)
猴头菇果实提取物(600毫克)
GeniusPure® Alpha-GPC 90% (350 毫克)*
Senactiv®三七刺梨提取物(100毫克)
AstraGin®黄芪三七提取物 (50毫克)
*代表 NNB的专利成分,将在下文介绍。
圣像的意义
Historic Labs 的创始人 Steven Barrios 也是一名竞技健美运动员和美国海军陆战队退伍军人,他给了我们一些关于图片的建议。仔细看看标签的侧面,你会看到五个代表锻炼前属性的图标:
表现:狮身人面像代表力量和智慧
持久力:金字塔经受住了数千年时间的考验
能量:圣甲虫代表着更新,与给予能量的太阳有关
焦点:Ankh代表身心之间的清晰和平衡
泵:骆驼可以在远距离储存大量的水,这与长时间的训练有关
Historic的Zeus宙斯氮泵配方解析
L-瓜氨酸苹果酸盐 2:1(6000 毫克)
BetaPure 无水甜菜碱(2500 毫克)
HydroPrime 甘油粉 (2500 毫克) *
猴头菇果实提取物(600毫克)
硫酸胍丁胺 (500mg)
GeniusPure Alpha-GPC 90% (350 毫克)*
RhodioPrime 6X (300 毫克)*
无水咖啡因(250毫克)
Senactiv®三七刺梨提取物(100毫克)
AstraGin®黄芪三七提取物 (50毫克)
Historic的Thermogenic减脂粉剂配方
Historic 的 Thermogenic Pre-Workout 为混合物添加了一定的脂肪燃烧功效,除了 NNB Nutrition 的两种脂肪燃烧成分 Mito-Burn 和 CaloriBurn 之外,还包含适量的咖啡因。
L-瓜氨酸苹果酸盐 2:1(6000 毫克)
BetaPure 无水甜菜碱(2500 毫克)
HydroPrime 甘油粉 (2500 毫克) *
猴头菇果实提取物(600毫克)
硫酸胍丁胺 (500mg)
MitoBurn (500 毫克)*
GeniusPure Alpha-GPC 90% (350 毫克)*
RhodioPrime 6x (300 毫克)*
无水咖啡因(200毫克)
zumXR(100毫克)
AstraGin®黄芪三七提取物 (50毫克)
CaloriBurn GP (40毫克)*
历史性的高刺激氮泵补剂-Historic
对于那些寻求更大提升的人来说,Historic 的高刺激氮泵补剂含有许多与其他配方相同的成分,但含有 350 毫克无水咖啡因和 100 毫克 zumXR 缓释咖啡因,这又产生了约 70 毫克咖啡因——总咖啡因含量高达420 毫克。
L-瓜氨酸苹果酸盐 2:1(6000 毫克)
CarnoSyn β-丙氨酸(3200 毫克)
HydroPrime 甘油粉 (2000 毫克) *
猴头菇果实提取物(600毫克)
无水咖啡因(350毫克)
GeniusPure Alpha-GPC 90% (350 毫克)*
RhodioPrime 6X (300 毫克)*
zumXR(100毫克)
AstraGin®黄芪三七提取物 (50毫克)
Historic Labs由NNB 提供支持
参考文献:
Patlar, Suleyman et al; “The effect of glycerol supplements on aerobic and anaerobic performance of athletes and sedentary subjects.”; Journal of human kinetics; vol. 34; 2012; 69-79; doi:10.2478/v10078-012-0065-x; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590833/ Rye, Connie, et al; “22.1. Osmoregulation and Osmotic Balance.”; Concepts of Biology 1st Canadian Edition; BCcampus; 1 May 2019; https://opentextbc.ca/biology/chapter/22-1-osmoregulation-and-osmotic-balance/ Montner, P et al; “Pre-exercise glycerol hydration improves cycling endurance time.”; International journal of sports medicine; vol. 17,1; 1996; 27-33; doi:10.1055/s-2007-972804; https://pubmed.ncbi.nlm.nih.gov/8775573/ Lyons T. P., et al; “Effects of glycerol-induced hyperhydration prior to exercise”; Medicine & Science in Sports & Exercise; August 1990; p 447-483; https://journals.lww.com/acsm-msse/Abstract/1990/08000/Effects_of_glycerol_induced_hyperhydration_prior.10.aspx Traini, Enea, et al. “Choline Alphoscerate (Alpha-Glyceryl-Phosphoryl-Choline) an Old Choline- Containing Phospholipid with a Still Interesting Profile as Cognition Enhancing Agent.” Current Alzheimer Research, vol. 10, no. 10, 31 Dec. 2013, pp. 1070–1079, doi:10.2174/15672050113106660173; https://pubmed.ncbi.nlm.nih.gov/24156263/ Purves D, Augustine GJ, Fitzpatrick D, et al.; “Neuroscience;” 2nd edition. Sunderland (MA): Sinauer Associates; 2001. Acetylcholine. https://www.ncbi.nlm.nih.gov/books/NBK11143/ Marcus, Lena, et al. “Evaluation of the Effects of Two Doses of Alpha Glycerylphosphorylcholine on Physical and Psychomotor Performance.” Journal of the International Society of Sports Nutrition, vol. 14, no. 1, 5 Oct. 2017, doi:10.1186/s12970-017-0196-5; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629791/ Ziegenfuss, Tim, et al. “Acute Supplementation with Alpha-Glycerylphosphorylcholine Augments Growth Hormone Response To, and Peak Force Production During, Resistance Exercise.” Journal of the International Society of Sports Nutrition, vol. 5, no. S1, Sept. 2008, doi:10.1186/1550-2783-5-s1-p15; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3313098/ Maisonneuve, C, et al; “Effects of zidovudine, stavudine and beta-aminoisobutyric acid on lipid homeostasis in mice: possible role in human fat wasting”; Antiviral Therapy; 9(5):801-10; October 2004; https://pdfs.semanticscholar.org/ad85/0e69e7a66f59bd0491fbf2b39da15f6eb2cf.pdf Roberts, L, et al; “b-Aminoisobutyric Acid Induces Browning of White Fat and Hepatic b-Oxidation and Is Inversely Correlated with Cardiometabolic Risk Factors”; Cell Metabolism; Volume 19, Issue 1, pp96-108; 2014; https://www.cell.com/cell-metabolism/fulltext/S1550-4131(13)00497-X Note, Reine et al; “Mitochondrial and metabolic effects of nucleoside reverse transcriptase inhibitors (NRTIs) in mice receiving one of five single- and three dual-NRTI treatments”; Antimicrobial agents and Chemotherapy; vol. 47,11: 3384-92; 2013; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC253807/ Shi, Chang-Xiang et al; “β-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes”; Scientific Reports; vol. 6 21924; February 24, 2016; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764829/ Jung, Tae Woo, et al; “BAIBA attenuates insulin resistance and inflammation induced by palmitate or a high fat diet via an AMPK–PPARδ-dependent pathway in mice”; Diabetologia; Volume 58, Issue 9, pp 2096–2105; September 2015; https://link.springer.com/article/10.1007/s00125-015-3663-z Kitase, Yukiko et al; “β-aminoisobutyric Acid, l-BAIBA, Is a Muscle-Derived Osteocyte Survival Factor”; Cell Reports; vol. 22,6 (2018): 1531-1544; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832359/ Wang, H, et al; “β-Aminoisobutyric acid ameliorates the renal fibrosis in mouse obstructed kidneys via inhibition of renal fibroblast activation and fibrosis”; Journal of Pharmacological Sciences; Volume 133, Issue 4; Pages 203-213; April 2017; https://www.sciencedirect.com/science/article/pii/S1347861317300038 Sugita, J., Yoneshiro, T., et al; “Grains of paradise (Aframomum melegueta) extract activates brown adipose tissue and increases whole-body energy expenditure in men”; British Journal of Nutrition; (2013) 110(4), pp. 733–738; https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/grains-of-paradise-aframomum-melegueta-extract-activates-brown-adipose-tissue-and-increases-whole-body-energy-expenditure-in-men/517F8F0D73864C919E42D502537BA01D/core-reader Sugita J, Yoneshiro T, et al; “Daily ingestion of grains of paradise (Aframomum melegueta) extract increases whole-body energy expenditure and decreases visceral fat in humans”; Journal of Nutritional Science and Vitaminology; 2014, 60(1): 22-27; https://pubmed.ncbi.nlm.nih.gov/24759256/ Jung, Suk Hwa et al. “Visceral Fat Mass Has Stronger Associations with Diabetes and Prediabetes than Other Anthropometric Obesity Indicators among Korean Adults.” Yonsei medical journal vol. 57,3 (2016): 674-80. doi:10.3349/ymj.2016.57.3.674 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4800358/ Riera, CE, et al. “Compounds from Sichuan and Melegueta Peppers Activate, Covalently and Non-Covalently, TRPA1 and TRPV1 Channels.” British Journal of Pharmacology, vol. 157, no. 8, Aug. 2009, pp. 1398–1409, 10.1111/j.1476-5381.2009.00307.x; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765304/ Morera, Enrico, et al. “Synthesis and Biological Evaluation of undefined-Gingerol Analogues as Transient Receptor Potential Channel TRPV1 and TRPA1 Modulators.” Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 4, 15 Feb. 2012, pp. 1674–1677, 10.1016/j.bmcl.2011.12.113; https://www.sciencedirect.com/science/article/abs/pii/S0960894X11017951 Porter, Craig. “Quantification of UCP1 function in human brown adipose tissue.” Adipocyte vol. 6,2 (2017): 167-174. doi:10.1080/21623945.2017.1319535 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477712/ Kozak, L P, and R Anunciado-Koza. “UCP1: its involvement and utility in obesity.” International journal of obesity (2005) vol. 32 Suppl 7,Suppl 7 (2008): S32-8. doi:10.1038/ijo.2008.236; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746324/ Purves, Dale. “The Biogenic Amines.” Neuroscience. 2nd Edition., U.S. National Library of Medicine, 1 Jan. 1970. https://www.ncbi.nlm.nih.gov/books/NBK11035/ Thangam, Elden Berla et al. “The Role of Histamine and Histamine Receptors in Mast Cell-Mediated Allergy and Inflammation: The Hunt for New Therapeutic Targets.” Frontiers in immunology vol. 9 1873. 13 Aug. 2018, doi:10.3389/fimmu.2018.01873. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099187/ Berger, Miles et al. “The expanded biology of serotonin.” Annual review of medicine vol. 60 (2009): 355-66. doi:10.1146/annurev.med.60.042307.110802. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5864293/ Laplante, Mathieu, and David M. Sabatini. “MTOR Signaling at a Glance.” Journal of Cell Science vol. 122 (2009): 3589-3594. doi:10.1242/jcs.051011. https://jcs.biologists.org/content/122/20/3589 Yoon, Mee-Sup. “mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass.” Frontiers in physiology vol. 8 788. 17 Oct. 2017. doi:10.3389/fphys.2017.00788. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650960/ Dazert, Eva, and Michael N Hall. “MTOR Signaling in Disease.” Current Opinion in Cell Biology vol 23,6 (2011): 744-755. https://www.sciencedirect.com/science/article/abs/pii/S0955067411001116 Zhong, Zhi-feng, et al. “Neuroprotective Effects of Salidroside on Cerebral Ischemia/Reperfusion-Induced Behavioral Impairment Involves the Dopaminergic System.” Frontiers in Pharmacology, 13 Dec. 2019. https://www.frontiersin.org/articles/10.3389/fphar.2019.01433/full Paravati, Stephen. “Physiology, Catecholamines.” StatPearls [Internet]., U.S. National Library of Medicine, 26 July 2020. https://www.ncbi.nlm.nih.gov/books/NBK507716/ Laban, Tahrier Sub. “Monoamine Oxidase Inhibitors (MAOI).” StatPearls [Internet]., U.S. National Library of Medicine, 22 Aug. 2020. https://www.ncbi.nlm.nih.gov/books/NBK539848/ Dunleavy, D L. “Mood and sleep changes with monoamine-oxidase inhibitors.” Proceedings of the Royal Society of Medicine vol. 66,9 (1973): 951. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1645427/ Shabbir, Faisal et al. “Effect of diet on serotonergic neurotransmission in depression.” Neurochemistry international vol. 62,3 (2013): 324-9. doi:10.1016/j.neuint.2012.12.014. https://pubmed.ncbi.nlm.nih.gov/23306210/ Merikangas, K R, and J R Merikangas. “Combination monoamine oxidase inhibitor and beta-blocker treatment of migraine, with anxiety and depression.” Biological psychiatry vol. 38,9 (1995): 603-10. doi:10.1016/0006-3223(95)00077-1. https://pubmed.ncbi.nlm.nih.gov/8573662/ Huang, Ling et al. “Multitarget-directed benzylideneindanone derivatives: anti-β-amyloid (Aβ) aggregation, antioxidant, metal chelation, and monoamine oxidase B (MAO-B) inhibition properties against Alzheimer’s disease.” Journal of medicinal chemistry vol. 55,19 (2012): 8483-92. https://pubmed.ncbi.nlm.nih.gov/22978824/ Panossian, Alexander et al. “Adaptogens stimulate neuropeptide y and hsp72 expression and release in neuroglia cells.” Frontiers in neuroscience vol. 6 6. 1 Feb. 2012, doi:10.3389/fnins.2012.00006. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269752/ Beck, B. “Neuropeptide Y in normal eating and in genetic and dietary-induced obesity.” Philosophical transactions of the Royal Society of London. Series B, Biological sciences vol. 361,1471 (2006): 1159-85. doi:10.1098/rstb.2006.1855. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1642692/ Ans, Armghan H., et al. “Neurohormonal Regulation of Appetite and Its Relationship with Stress: A Mini Literature Review.” Cureus, 23 July 2018. https://www.cureus.com/articles/13630-neurohormonal-regulation-of-appetite-and-its-relationship-with-stress-a-mini-literature-review Liu, Jiuxi et al. “Salidroside protects mice from high-fat diet-induced obesity by modulating the gut microbiota.” International immunopharmacology, vol. 120 110278. 14 May. 2023, doi:10.1016/j.intimp.2023.110278; https://www.sciencedirect.com/science/article/abs/pii/S1567576923006008
转载须知
标注‘原创’仅代表原创编译,本平台不主张对原文的版权。本平台转载仅仅是出于学术交流和传播信息的需要,并不意味着代表本平台观点或证实其内容的真实性;转载文章版权归原作者所有,作者如果不希望被转载或有侵权行为,请联系本平台删除。