Science & Technology
随着纳米科学技术的发展与进步,科学家们对固体物质的原子层面的理解更加迫切,这大大促进了具有高空间分辨率的衍射和光谱学的研究发展。
其中,作为材料表面形貌分析必不可少的测试手段,透射电子显微镜 (TEM) 具有无与伦比的实用价值,因为它可以通过TEM图像和电子衍射来提供具有高空间分辨率的结构信息,在此基础上,通过联合使用电子能量损失谱(Electron Energy Loss Spectroscopy ,EELS)则可以获得样品的化学信息,从而进行定性定量分析。
EELS的发展历史
EELS是物理学及材料科学等研究领域的重要表征手段,该技术始于十九世纪初期。
1929年,Rudberg发现利用一特定能量的电子束施加在欲测量的金属样品上,然后接受非弹性(有能量损失)的电子,发现会随着样品化学成分的不同而有不同的损失能量,因此可以分析不同的能量损失位置而得知材料的元素成分。
在十九世纪五十年代,该表征手段开始流行。
此后到60年代末70年代初发展起来的高分辨电子能量损失谱(HREELS),在电子非弹性碰撞理论的推动下,由于其对表面和吸附分子具有高的灵敏性,并对吸附的氢具有分析能力,更重要的是能分辨表面吸附的原子、分子结构和化学特性,因而应用领域开始增广。
然而,直到90年代,由于显微仪器和真空技术的进步,EELS才借着这股东风迅速发展,并开始在全世界的实验室中广泛应用。
EELS的特点
作为一个目前材料领域最常见的分析测试技术之一,EELS相比于其他类似的测试技术具有许多不可忽视的巨大优势:
(1)可以实现横向分辨率10 nm,深度0.5~2 nm的区域内成分分析;
(2)具有X射线光电子能谱(X-ray photo spectroscopy,XPS)所没有的微区分析能力;
(3)具有比俄歇电子能谱(Auger electron spectroscopy,AES)更为表面和灵敏的特性;
(4)对轻元素十分敏感,因而在探测轻元素上具有无可比拟的优势;
(5)EELS能轻易辨别表面吸附的原子、分子的结构和化学特性,从而成为表面物理和化学研究的有效手段之一。
正因如此,对EELS的研究应用也有着日新月异的变化。为了方便大家详细的了解该测试技术,笔者将结合自己的科研经验对EELS的基本原理及功能进行细致的介绍,同时也会附上部分应用实例以供参考消化。
结构和原理
电子与物质交互作用,能量和动量都会产生变化,因而会释放出多种信号(图1)。
在EELS中,具有已知动能的电子束入射待测材料后,部分电子与原子相互作用发生非弹性散射,损失部分能量并且路径发生随机的小偏转,这个过程中能量损失的大小经电子能谱仪测量并得以分析解释。通过研究非弹性散射电子的能量损失分布,可以得到原子中电子的空间环境信息,从而研究样品的多种物理和化学性质。
EELS的结构组成
EELS的结构大体上可以分为三部分:电子源(TEM部分)、能量分析器(谱仪部分)和记录系统(探测器部分),如图2所示。
电子源:非弹性散射电子源,主要包括透过电子、核心损失电子以及等离子损失电子。
谱仪:该部分系统的主要功能是按照能量的大小对电子源逸出的电子进行分散处理。
记录系统:非弹性散射的电子经过谱仪的分散后,相同能量的电子会在同一地方聚焦,并在探测器(CCD或二极管)上形成能量损失谱,以供进行最后的数据分析处理
EELS的原理
在非弹性散射电子中,存在一些具有一定特征能量的俄歇电子,其特征能量只与物质的元素有关,如果在试样上检测这些俄歇电子的数目并按照能量分布,就可以标定物质的各元素组成。如果其特征能量不仅与物质的元素有关,而且与入射电子的能量也有关,则称其为特征能量损失电子。
将在试样上检测到的能量损失电子的数目按照能量分布,即可得到一系列的谱峰,也就是我们说的电子能量损失谱。按照散射能量的大小,通常情况下,我们得到的电子能量损失谱可以划分为三个区:零损失区、低能损失区和高能损失区(图3)。
TEM数据交流及讨论
中材新材料研究院专注透射电镜表征,可提供各类样品制备、透射电镜表征和数据分析一条龙服务,以下是我们公司提供的TEM数据交流群,旨在交流讨论TEM方面的各种问题,如果您感兴趣的话,就加入吧
【免责声明:本推文转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系作者删除。】