冷冻电镜的基本原理

文摘   2024-11-07 16:30   广东  

       先进电子显微技术为从微观基础上解析宏观物质的性质提供了有力的技术支持,但受限于电子显微镜的工作原理,以及含大量水分的生物样品的特殊性,它在生物科学研究领域的应用受到了严重限制。冷冻电子显微技术(Cryo-electron microscopy, Cryo-EM)的现世为这一局限填补了空白,采用样品冷冻——低剂量电子断层扫描--三维重构的方案,科学家们顺利得到了大分子生物样品的电子显微相。而随着硬件仪器和解析软件的发展,冷冻电镜的图像分辨率大大提升,应用范围也得到了进一步扩展,不仅限于生物材料结构研究,还可用来广泛研究对电子束、热敏感的特殊材料。冷冻电镜也将于未来在材料科学研究领域里开辟出一片崭新的天地。









冷冻电子显微镜的原理与结构



工作原理


样品制备:样品快速冷冻技术


      样品的原位冷冻固定处理是低温电子显微镜标本制备的第一步,其过程如下图所示[1]。

                                  图1原位冷冻固定示意图[1]

      冷冻电镜采用的快速冷冻技术关键在于“快速”。这是由于:采用常规冷冻手段,水分子会在氢键作用下形成冰晶,一来会改变样品结构,二来在成像过程中,冰晶体会产生强烈的电子衍射掩盖样品信号。而当冷冻速率足够快时,水分子在形成晶体之前就会凝固成无定形的玻璃态冰,具有非晶态特性,保证了在电子束探测成像的过程中不会对样品成像造成干扰。

      冷冻固定时,样品首先放置在由液氮冷却的容器中,随后被快速浸入液态乙烷中。采用液态乙烷作为冷冻剂的目的是为了使冷冻速率足够快,在冷冻过程中,样品将以每秒104至106 K的速度被快速冷却。生物样品中的水被玻璃化冷冻后,样品结构就得到了保持和固定,同时玻璃化冰也不会在真空环境中挥发,在一定程度上保护了样品免受电子辐射的损伤。


样品成像:低剂量辐照成像


       普通的样品材料在进行TEM表征时,电子剂量越高,成像质量越好。但生物样品受到的辐照损伤却是和累积的辐照总剂量相关的。更详细一点说,随着辐照剂量的增加,辐照损伤对高分辨细节的破坏更严重。因此,为了尽可能地获得更多的细节,就必须要对样品采用用低剂量辐照成像。

      在冷冻电镜技术中,常用的低剂量辐照成像法有两种:冷冻电子断层扫描法,单颗粒分析成像法。


(1)电子断层扫描技术(cryogenic computed tomography)

      进行断层扫描时,样品被连续不停地旋转,并在每个旋转角度上都进行一次成像。每一幅电子显微像是物体在不同投影方向的二维投影像, 经傅立叶变换会得到一系列不同取向的截面,当截面足够多时,会得到傅立叶空间的三维信息,再经傅立叶反变换便能得到物体的三维结构。

                           图2 电子断层扫描技术示意图[2]


(2)单颗粒分析法(Single particle analysis, SPA)

        单颗粒技术获得投影的具体方法如图3:制备很多具有同样结构的大分子样品,将其进行分散冷冻后进行随机的投影拍照,再通过计算模拟测定角度,对具有相同角度的粒子进行组合,突出其中更特殊、更容易解释的特征。

       单颗粒冷冻电镜是针对单个粒子进行重构的技术,但我们的研究对象往往是多构象或结构异质的蛋白,颗粒之间存在细微差别,这是一些蛋白质无法获得高分辨结构的重要原因之一。对于结构异质性样品的分析,我们需要首先将样品分成几个同质的子集,然后分别进行三维重建。

       由于单颗粒分析法理论成像分辨率更高,尤其在分析具有同质性结构的样品时表现出更方便、更优异的成像能力,因此得到了更广泛的应用。单颗粒分析法的研究对象可以是具有某种对称性的颗粒,也可是不具有任何对称性的蛋白分子或复合体,尤其是针对核糖体的表征。

               图3 单颗粒分析图像重建[3]


(3)电子断层扫描技术与单颗粒分析法的比较:

单颗粒分析法:

优点:解析生物大分子的理论分辨率可达原子级;样品受总辐射值小;对称颗粒的解析分辨率更高;分子量越大,结果越好;

缺点:对样品的重复性有非常苛刻的要求,只能用于对经过提纯的结构稳定的生物大分子的三维重构。


电子断层扫描技术:

优点:简单直接;对样品的要求较低;常用于对细胞或者生物组织结构的三维重构;

缺点:对同一样品位置多次拍照时,电子束对样品的辐照损伤就成为了比较严重的问题;样品旋转角度受到电子束透过样品厚度能力的限制。


三维重建

       透射电子显微镜所成图像是物体的投影像,类似于X射线光片。通过使用投影切片定理(图4),可以组合从一个视角范围拍摄的物体的许多图像(2D投影)来生成物体的三维重建。

       在理想的单颗粒成像条件下,玻璃冰中的蛋白质随机分布,如果使用了大量的粒子图像,则可以实现各向同性的重建。这与电子断层扫描相反,电子断层扫描由于样品的几何形状而限制了视角,从而实现了各向异性的重建。

      图4 三维结构的傅里叶反演重建原理[4]




参考文献



[1] Fuest M , Nocera G M , Modena M M , et al. Cryofixation during live﹊maging enables millisecond time orrelated light and electron microscopy[J]. Journal of Microscopy, 2018, 272(2).

[2] Subramaniam S (2006) The SIV surface spike imaged by electron tomography: one leg or three? PLoS Pathog 2, e91

[3] Carroni M , Saibil H R . Cryo electron microscopy to determine the structure of macromolecular complexes[J]. Methods, 2016, 95:78-85.

[4] Li Y, Li Y, Pei A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358: 506-510.


TEM数据交流及讨论

中材新材料研究院专注透射电镜表征,可提供各类样品制备、透射电镜表征和数据分析一条龙服务,以下是我们公司提供的TEM数据交流群,旨在交流讨论TEM方面的各种问题,如果您感兴趣的话,就加入吧



中材新材料
从事金属/非金属/薄膜/半导体/生物样品的TEM制样、TEM检测、TEM分析。同时提供晶体学/显微学等相关问题的咨询解答服务。助力科研事业走向更高、更远、更强。
 最新文章