第一作者:Siyue Han
通讯作者:张颖 教授
通讯单位:东北农业大学资源与环境学院
DOI:10.1016/j.jhazmat.2023.132539
由于低温、农药污染和养分供应不足,中国东北黑土区的农业土壤经常面临负面压力。本研究从受阿特拉津污染的土壤中选择性地分离出一株新的耐寒菌株--单纯弧菌 C1(C1)。当初始接种比例为 5:1:2 时,人工构建的微生物联合体(CPD)[C1、磷溶解菌 Enterobacter sp.P1,以及阿特拉津降解菌 Acinetobacter lwoffii DNS32]在 15 °C下表现出最有效的提高阿特拉津降解和磷溶解能力的性能。CPD 增强了与能量有关的代谢途径,增加了胆碱的产生,从而调节细菌对温度降低的适应性。此外,菌株可选择性地利用彼此提供的碳源(低分子量有机酸)或氮源(阿特拉津的某些代谢产物)来促进生长。此外,菌株 C1 通过增加不饱和脂肪酸的表达来提高膜的流动性。盆栽实验表明,CPD 通过诱导光合作用、膜渗透性、磷反应和耐寒性相关基因的表达,帮助大豆幼苗抵抗低温和阿特拉津污染的双重胁迫。
关于应用基于微生物群落的生物刺激来应对有机污染、养分吸收和环境选择等多重压力的研究还很缺乏。因此,在本研究中,我们旨在通过确定序列信息来阐明经莠去津处理的土壤在低温条件下的群落动态。我们还进行了物种分析,以确定对低温条件反应的差异,并建立了耐低温核心细菌物种资源库。随后,我们构建了一个人工微生物联合体,由耐低温细菌(C1)、阿特拉津降解细菌(Acinetobacter lwoffii DNS32)和磷酸盐溶解细菌(Enterobacter sp.) 我们采用了协同培养和代谢组学技术来研究低温条件下群落动态的功能影响以及可能的种间刺激策略。最后,我们研究了多功能微生物群在低温和阿特拉津污染胁迫下对大豆幼苗生长性能的影响模式和分子机制。这项研究为在低温条件下减少农药污染、改善农业土壤质量提供了一种经济有效的解决方案。
Fig. 1. Microbial species diversity (a–c: representing observed species, chao1, and shannon, respectively) and non-metric multidimensional scaling (NMDS) analysis (d) in different treated soils, and relative bacterial community abundance on the phylum level (e) and genus level (f) in top 10. CK, untreated soil cultured for 30 d; R-20/30, soil samples exposed to atrazine and cultured for 20/30 d at 30 °C; C-20/30, soil samples exposed to atrazine and cultured for 20/30 d at 10 °C.
Fig. 2. Growth and atrazine degradation of CPD at different initial inoculation ratios under low temperature conditions (a); changes in strain growth (b) and degradation (c) in different treatments; growth of strains C1, P1, and DNS32 in a semipermeable membrane bag system (d); changes in the yield of the intermediate metabolite cyanuric acid (e); phosphorus solubilization ability of different strains and combinations (f). Error bars represent the standard error of three replicates. Statistical differences were considered to be significant at *P < 0.05, **P < 0.01, or ***P < 0.001. The ns represented no significance.
Fig. 3. The differential abundance scores are based on the KEGG database (a: CPD vs C1/DNS32, b: CPD vs P1/DNS32). The score values of 1 and - 1 represent the increase and decrease of metabolites in the measured metabolic pathways, respectively. The length of the line indicates the absolute score value and the dot size at the endpoint of the line stands for the differential metabolites number in the pathway; statistical analysis of metabolites extracted from different treatments (c: energy metabolism, d: cross-feeding). Heatmap showing the relative abundances of metabolites.
Fig. 4. Prediction of potential metabolite exchange in CPD (a); strain growth (right) and atrazine degradation (left) after supplementation of corresponding exchanged metabolites in the culture medium measured in vitro assay, from top to bottom for strain DNS32 (b-c), P1 (d-e), and C1 (f-g) and absolute abundance of atrazine degradation genes in different treatments (h). Error bars represent the standard error of three replicates. Statistical differences were considered to be significant at *P < 0.05 or **P < 0.01.
Fig. 5. Overall morphological appearance (a) and root scanning images (b) of soybean seedlings under different treatments during low-temperature cultivation.
Fig. 6. The effects of different treatments on the content of chlorophyll (a), carotenoids (b), soluble sugars (c), soluble proteins (d), total P in above and underground parts (e), relative electrolyte leakage (f), and relative gene expression (g) in soybean seedling. The standard errors of the three replicate samples were described using error bars. Statistical differences were considered to be significant at *P < 0.05, **P < 0.01, or ***P < 0.001. The ns represented no significance.
本研究最重要的发现是,在低温条件下,氯化石蜡提高了阿特拉津去除率和钾吸收率。代谢组分析表明,CPD 的生长/降解能力增强主要与能量代谢途径的变化有关,包括 TCA 循环、氨基酸和糖酵解代谢。研究发现,这些变化消除了氧化应激,提高了生物量产量,减轻了能量负担。降解菌 DNS32 和非降解菌(C1 和 P1)之间的代谢物交换也在体外得到了验证。在低温和阿特拉津污染胁迫下,CPD 在减轻阿特拉津对大豆幼苗生长的负面影响方面表现出显著的潜力。它改善了光合作用,提供了渗透保护,提高了钾的吸收,并增强了耐寒性。同时,CPD 还改善了相应功能基因的表达。这些研究结果表明,这种功能微生物联合体作为可持续农业的一种潜在解决方案,具有重要的实际意义。
Siyue Han, Yue Tao, Longwei Zhao, Yunhe Cui, Ying Zhang, Metabolic insights into how multifunctional microbial consortium enhances atrazine removal and phosphorus uptake at low temperature, Journal of Hazardous Materials, 2024, https://doi.org/10.1016/j.jhazmat.2023.132539
声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!
邮箱:Environ2022@163.com
欢迎大家将《水处理文献速递》加为星标
即时获取前沿学术成果
若有帮助,请点击“在看”分享!
投稿、转载请扫描下方二维码联系小编吧