论文速递 | 中周疲劳状态下疲劳设计概率方法的研究综述

文摘   2024-08-05 19:00   德国  
综述论文 | Review Article
开源获取 | Open Access
Quantitative review of probabilistic approaches to fatigue design in the medium cycle fatigue regime

中周疲劳状态下疲劳设计概率方法的研究综述

引用格式 | Cited by
Kufoin E, Susmel L, 2024. Quantitative review of probabilistic approaches to fatigue design in the medium cycle fatigue regimeProbabilistic Engineering Mechanics, 75: 103589.
DOI: 10.1016/j.probengmech.2024.103589

摘要 | Abstract

为量化材料疲劳行为,需使用 Wöhler 图。现有技术表明,多年来已提出并通过大量疲劳数据集验证了多种适用于确定 Wöhler 曲线的方法。试验疲劳数据的变化导致了统计分析和设计的需求。本文重点关注中周疲劳范围 (即 103 至 107 周期内失效),综述了相关统计方法,特别是美国材料试验学会 (American Society for Testing Materials, ASTM) 和国际焊接学会 (International Institute of Welding, IIW) 建议的方法以及所谓的线性回归法 (linear regression method, LRM)。通过虚拟数据集 (这些数据集满足特定统计要求) 以及文献中的验疲劳数据集,对这些方法的响应进行了评估。虽然在两倍或更小范围内的散布带对所有方法都很相似,但国材料试验方法是最保守的。
关键词中周疲劳, 散布带, 生存概率, 回归分析, 应力水平, 疲劳设计
To quantify the fatigue behaviour of materials, a Wöhler diagram is required. The state of the art shows that, over the years, numerous approaches suitable for determining Wöhler curves have been devised and validated through large fatigue data sets. The variation in experimental fatigue data elicits the use of statistics for analysis and design purposes. By focusing on the medium-cycle fatigue regime (i.e., failures in the range 103÷107 cycles to failure), this paper reviews relevant statistical approaches, particularly the methods suggested by the American Society for Testing Materials (ASTM) as well as the International Institute of Welding (IIW) and the so-called Linear Regression Method (LRM). Their responses were assessed on virtual data sets tailored to satisfy specific statistical requirements as well as experimental fatigue data sets from the literature. While the scatter bands at two times or less of the spread are similar for all approaches, the ASTM approach is seen to be the most conservative.
KeywordsMedium cycle fatigue; Scatter band; Probability of survival; Regression analyses; Stress levels; Fatigue design

创新点 | Highlights

  • 综述了疲劳设计曲线估计的统计方法
  • 分析了平均疲劳曲线估计的问题
  • 综述了确定散布带的推荐策略
  • 基于虚拟数据集评估标准方法
  • Statistical approaches to estimate fatigue design curves are reviewed
  • The problem of estimating mean fatigue curves is analysed
  • Strategies recommended to be used to determine scatter bands are reviewed
  • Standard approaches are assessed based on virtual data sets

图 1: 各类疲劳状态的 S-N 曲线

Fig. 1. S-N curve profile for the various fatigue regimes

图 2: 平均 S-N 曲线显示的散布因子性质、生存概率的参考应力水平与散带的定义

Fig. 2. Mean S-N curve showing the nature of the scatter factor K_D, the reference stress levels σ_{0,P%} at a probability of survival P, and the definition of the scatter band

图 3: 双曲线显示的平均曲线置信区间与相关数据点

Fig. 3. Hyperbolic curves showing the confidence interval of the mean curve and the associated data points

图 4: 随反斜率值增加的理论数据在 95% 生存概率下平均曲线与设计应力水平下设计曲线: (a) 反斜率 3.6; (b) 反斜率 10; (c) 反斜率 15.1; (d) 反斜率 28.3

Fig. 4. Mean curves, design curves with the design stress levels for increasing inverse slopes values at a probability of survival of 95% for the data in Tab. 4: (a) Inverse slope 3.6; (b) Inverse slope 10; (c) Inverse slope 15.1; (d) Inverse slope 28.3

图 5: 散布带随反斜率增加的变化

Fig. 5. Change in scatter bands with increasing inverse slope

图 6: 随方差增加生成的理论数据: (a) 第 1 组数据的平均曲线与设计曲线; (b) 第 2 组数据的平均曲线与设计曲线; (c) 第 3 组数据的平均曲线与设计曲线; (d) 第 4 组数据的平均曲线与设计曲线

Fig. 6. Graphs representing data from Tab. 5: (a) Mean and design curve for data 1; (b) Mean curve and design curve for data 2; (c) Mean curve and design curve for data 3; (d) Mean curve and design curve for data 4

图 7: 散布带随方差增加的变化

Fig. 7. Change of scatter band with increasing variance

图 8: 散布带宽随重复水平的变化

Fig. 8. Change in the size of scatter band with percentage replication

图 9: 具有恒定方差、样本集、反斜率与带宽的理论疲劳数据不同重复水平: (a) 20%; (b) 35%; (c) 55%; (d) 75%

Fig. 9. Variated replication level of theoretical fatigue data with constant variance, sample set and inverse slope and spread: (a) 20%; (b) 35%; (c) 55%; (d) 75%

图 10: 不同样本集数量的散布带与设计应力: (a) 6 个; (b) 8 个; (c) 12 个

Fig. 10. Scatter bands and design stresses for varied magnitude of sample set: (a) n = 6; (b) n = 8; (c) n = 12

图 11: 文献中选定疲劳数据集的散布带随反斜率增加的变化

Fig. 11. Trends in scatter band with increasing inverse slope of selected fatigue datasets from literature

图 12: 改变方差、反斜率与样本集下文献中疲劳数据集散布带的美国材料试验学会法、国际焊接学会法与线性回归法对比

Fig. 12. Comparing scatter bands of ASTM, IIW and LRM of fatigue data sets from literature with changing variance, inverse slope and sample set

作者信息 | Authors

Elvis Kufoin 

英国谢菲尔德大学 (University of Sheffield) 土木与结构工程系

Luca Susmel通讯作者 (Corresp.) 
英国谢菲尔德大学 (University of Sheffield) 土木与结构工程系

Email: l.susmel@sheffield.ac.uk



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

Probab Eng Mech
国际学术期刊 Probabilistic Engineering Mechanics 创立于 1985 年,SCI 收录,JCR Q1,现任主编是美国工程院院士、中国科学院外籍院士、莱斯大学 Pol D. Spanos 教授。
 最新文章