论文速递 | 加性/乘性白噪声下强非线性系统高维稳态 Fokker-Planck-Kolmogorov 方程求解的高效方法

文摘   2024-10-10 19:00   上海  
An efficient method for solving high-dimension stationary FPK equation of strongly nonlinear systems under additive and/or multiplicative white noise

加性/乘性白噪声下强非线性系统高维稳态 Fokker-Planck-Kolmogorov 方程求解的高效方法

引用格式 | Cited by
Xiao YY, Chen LC, Duan ZD, Sun JQ, Tang YN, 2024. An efficient method for solving high-dimension stationary FPK equation of strongly nonlinear systems under additive and/or multiplicative white noise. Probabilistic Engineering Mechanics, 77: 103668.
DOI: 10.1016/j.probengmech.2024.103668
摘要 | Abstract
工程结构在恶劣环境下会发生剧烈的非线性随机振动。自 20 世纪 60 年代以来,随机振动得到了广泛研究,但对于大型强非线性系统,随机振动问题仍悬而未决。本文提出了一种基于神经网络的加性或乘性 Gauss 白噪声 (Gaussian white noise, GWN) 激励下大型强非线性系统随机振动分析方法。所提方法首先将关于状态量概率密度函数 (probability density function, PDF) 的高维稳态 Fokker-Planck-Kolmogorov (FPK) 方程简化为仅涉及感兴趣状态量 (通常一维或二维) 的低维 FPK 方程。证明了低维 FPK 方程中的等价漂移系数 (equivalent drift coefficient, EDC) 和扩散系数 (equivalent diffusion coefficient, EDF) 是给定感兴趣量系数的条件均值。此外,证明了条件均值可通过回归进行最佳估计。随后,用半解析径向基函数神经网络将漂移与扩散系数近似表示为保留变量的函数,并采用确定性分析生成样本进行训练。最后,采用物理信息神经网络求解简化的稳态 FPK 方程,得到系统响应的概率密度函数。通过四个典型加性/乘性 Gauss 白噪声激励下的算例,将所提方法结果与精确解 (若有) 或蒙特卡罗模拟进行对比,检验所提方法的精度和效率。所提方法比广义密度全局演化方程格式 (一种类似的方法) 表现出更高精度,尤其是对强非线性系统。值得注意的是,本文虽仅应用于稳态系统,但将所提框架扩展到瞬态系统也是可行的。
关键词: 随机振动, 强非线性系统, 稳态 FPK 方程, 径向基函数神经网络, 物理信息神经网络
Engineering structures may suffer from drastic nonlinear random vibrations in harsh environments. Random vibration has been extensively studied since 1960s, but is still an open problem for large-scale strongly nonlinear systems. In this paper, a random vibration analysis method based on the Neural Networks for large-scale strongly nonlinear systems under additive and/or multiplicative Gaussian white noise (GWN) excitations is proposed. In the proposed method, the high-dimensional steady-state Fokker–Planck-Kolmogorov (FPK) equation governing the state’s probability density function (PDF) is firstly reduced to low-dimensional FPK equation involving only the interested state variables, generally one or two dimensions. The equivalent drift coefficients (EDCs) and diffusion coefficients (EDFs) in the low-dimensional FPK equation are proven to be the conditional mean of the coefficients given the interested variables. Furthermore, it is shown that the conditional mean can be optimally estimated by regression. Subsequently, the EDCs and EDFs, as functions of the retained variables, are approximated by the semi-analytical Radial Basis Functions Neural Networks trained with samples generated by a few deterministic analyses. Finally, the Physics Informed Neural Network is employed to solve the reduced steady-state FPK equation, and the PDF of the system responses is obtained. Four typical examples under additive and/or multiplicative GWN excitations are used to examine the accuracy and efficiency of the proposed method by comparing its results with the exact solution (if available) or Monte Carlo simulations. The proposed method also exhibits greater accuracy than the globally-evolving-based generalized density evolution equation scheme, a similar method of its kind, especially for strongly nonlinear systems. Notably, even though steady-state systems are applied in this paper, there is no obstacle to extending the proposed framework to transient systems.
KeywordsRandom vibration; Strongly nonlinear system; Steady-state FPK equation; Radial basis functions neural network (RBFNN); Physics informed neural network (PINN).
创新点 | Highlights
  • 提出了一种复杂非线性系统随机分析的高效神经网络格式

  • 采用高效的径向基函数神经网络从先前数据中近似等漂移和扩散系数
  • 研究了四个不同复杂度和非线性程度的算例,以验证所提格式的有效性和优势
  • A highly efficient NN-based scheme for the stochastic analysis of complex nonlinear system is proposed.

  • The powerful RBFNN is employed to approximate the equivalent drift coefficients (EDCs) and diffusion coefficients (EDFs) from a few prior data.
  • Four examples with various levels of complexity and nonlinearity are studied to verify the effectiveness and advantage of the proposed scheme.

图 1: 仅考虑一个感兴趣量时回归函数与条件期望的关系

Fig. 1. Connection of the regression function r(x_1) and conditional expectation E(Y | X_1 = x_1), where only one interested quantity is considered

图 2: 径向基函数神经网络格式: (a) 神经网络架构; (b) 径向基函数示意图

Fig. 2. Scheme of RBFNN: (a) Architecture of NN; (b) Illustration of RBFs

图 3: 等漂移与扩散系数近似的径向基函数神经网络模型流程图

Fig. 3. Flowchart of the RBFNN model to approximate EDCs and EDFs

图 4: 物理信息神经网络求解稳态 FPK 方程的流程图

Fig. 4. Flowchart of the PINN to solve the steady-state FPK equation

图 5: 均方误差与可决系数随等漂移系数训练径向基函数神经网络样本数的变化

Fig. 5. MSE and R-squared vs. the number of samples in training RBFNN for EDC a_2^e(x_1,x_2)

图 6: 精确等漂移系数及其分别基于 300 个样本下径向基函数神经网络与局部加权光滑散点的近似

Fig. 6. Exact EDC a_2^e(x_1,x_2) and its approximation by respectively the RBFNN and Lowess regressions with 300 samples

图 7: 基于所提方法的速度稳态边缘概率密度函数与精确解、300 次蒙特卡罗模拟和广义密度全局演化方程解的对比: (a) 线性坐标速度; (b) 对数坐标速度

Fig. 7. Comparison of the steady-state marginal velocity PDF by the proposed method with the exact solution, 300 MCS, and GV-GDEE solution: (a) Velocity in linear coordinates; (b) Velocity in logarithmic coordinates

图 8: 精确联合概率密度函数: (a) 概率密度函数三维图; (b) 概率密度函数云图

Fig. 8. Exact joint PDF p(x_1,x_2): (a) 3D view of the PDF; (b) Contour of the PDF

图 9: 均方误差与可决系数随漂移与扩散系数训练径向基函数神经网络样本数的变化

Fig. 9. MSE and R-squared vs. the number of samples in training RBFNN for a_2^e(x_1,x_2) and EDF b_22^e(x_1,x_2)

图 10: 精确等漂移系数及其分别基于 400 个样本下径向基函数神经网络与局部加权光滑散点的近似: (a) 基于径向基函数神经网络的漂移系数; (b) 精确漂移系数与基于径向基函数神经网络近似的对比; (c) 基于局部加权光滑散点漂移系数; (d) 精确漂移系数与基于局部加权光滑散点近似的对比

Fig. 10. Exact EDC a_2^e(x_1,x_2), and its approximation by respectively the RBFNN and Lowess with 400 samples: (a) EDC by RBFNN; (b) Comparison between the exact EDC and approximated EDC by RBFNN; (c) EDC by Lowess; (d) Comparison between the exact EDC and approximated EDC by Lowess

图 11: 精确扩散系数及其分别基于 400 个样本下径向基函数神经网络与局部加权光滑散点的近似: (a) 基于径向基函数神经网络的扩散系数; (b) 精确扩散系数与基于径向基函数神经网络近似的对比; (c) 基于局部加权光滑散点扩散系数; (d) 精确扩散系数与基于局部加权光滑散点近似的对比

Fig. 11. Exact EDF b_22^e(x_1,x_2), and its approximation by respectively the RBFNN and Lowess with 400 samples: (a) EDF by RBFNN; (b) Comparison between the exact EDF and approximated EDF by Lowess; (c) EDF by Lowess; (d) Comparison between the exact EDF and approximated EDF by RBFNN

图 12: 基于所提方法的位移和速度稳态边缘概率密度函数与精确解400 次蒙特卡罗模拟广义密度全局演化方程解的对比: (a) 线性坐标位移; (b) 对数坐标位移(c) 线性坐标速度; (d) 对数坐标速度

Fig. 12. Comparison of the steady-state marginal displacement and velocity PDF by the proposed method with the exact solution, 400 MCS, and GV-GDEE solution: (a) Displacement in linear coordinates; (b) Displacement in logarithmic coordinates; (c) Velocity in linear coordinates; (d) Velocity in logarithmic coordinates

图 13: 精确联合概率密度函数: (a) 概率密度函数三维图; (b) 概率密度函数云图

Fig. 13. Exact joint PDF p(x_1,x_2): (a) 3D view of the PDF; (b) Contour of the PDF

图 14: 均方误差与可决系数随漂移与扩散系数训练径向基函数神经网络样本数的变化: (a) 等价漂移系数的均方误差; (b) 等价漂移系数的可决系数(c) 等价扩散系数的均方误差; (d) 等价扩散系数的可决系数

Fig. 14. MSE and R-squared vs. the number of samples in training RBFNN for a_2^e(x_1,x_2) and EDF b_22^e(x_1,x_2): (a) MSE for EDC; (b) R-squared for EDC; (c) MSE for EDF; (d) R-squared for EDF

图 15: 精确等漂移系数及其分别基于 400 个样本下径向基函数神经网络与局部加权光滑散点的近似: (a) 基于径向基函数神经网络的漂移系数; (b) 精确漂移系数与基于径向基函数神经网络近似的对比; (c) 基于局部加权光滑散点漂移系数; (d) 精确漂移系数与基于局部加权光滑散点近似的对比

Fig. 15. Exact EDC a_2^e(x_1,x_2), and its approximation by respectively the RBFNN and Lowess with 400 samples: (a) EDC by RBFNN; (b) Comparison between the exact EDC and approximated EDC by RBFNN; (c) EDC by Lowess; (d) Comparison between the exact EDC and approximated EDC by Lowess

图 16: 精确扩散系数及其分别基于 400 个样本下径向基函数神经网络与局部加权光滑散点的近似: (a) 基于径向基函数神经网络的扩散系数; (b) 精确扩散系数与基于径向基函数神经网络近似的对比; (c) 基于局部加权光滑散点扩散系数; (d) 精确扩散系数与基于局部加权光滑散点近似的对比

Fig. 16. Exact EDF b_22^e(x_1,x_2), and its approximation by respectively the RBFNN and Lowess with 400 samples: (a) EDF by RBFNN; (b) Comparison between the exact EDF and approximated EDF by Lowess; (c) EDF by Lowess; (d) Comparison between the exact EDF and approximated EDF by RBFNN

图 17: 基于所提方法的位移和速度稳态边缘概率密度函数与精确解400 次蒙特卡罗模拟广义密度全局演化方程解的对比: (a) 线性坐标位移; (b) 对数坐标位移(c) 线性坐标速度; (d) 对数坐标速度

Fig. 17. Comparison of the steady-state marginal displacement x_1 and velocity x_2 PDF by the proposed method with the exact solution, 400 MCS, and GV-GDEE solution: (a) Displacement x_1 in linear coordinates; (b) Displacement x_1 in logarithmic coordinates; (c) Velocity x_2 in linear coordinates; (d) Velocity x_2 in logarithmic coordinates

图 18: 10 层框架结构模型

Fig. 18. 10-story frame structure model

图 19: 均方误差与可决系数随漂移系数训练径向基函数神经网络样本数的变化: (a) 均方误差; (b可决系数

Fig. 19. MSE and R-squared vs. the number of samples in training RBFNN for EDC a_2^e(x_10,x_10): (a) MSE; (b) R-squared

图 20: 基于 400 个样本下径向基函数神经网络与局部加权光滑散点的漂移系数近似: (a) 基于径向基函数神经网络的漂移系数; (b) 基于局部加权光滑散点漂移系数

Fig. 20. Approximation of a_2^e(x_10,x_10) by RBFNN and Lowess with 400 samples at the top floor: (a) EDC by RBFNN; (b) EDC by Lowess

图 21: 蒙特卡罗模拟获得的联合概率密度函数: (a) 概率密度函数三维图; (b) 概率密度函数云图

Fig. 21. Joint PDF p(x_10,x_10) obtained by MCS: (a) 3D view of the PDF; (b) Contour of the PDF

图 22: 基于所提方法的顶层位移和速度稳态边缘概率密度函数与蒙特卡罗模拟广义密度全局演化方程解的对比: (a) 线性坐标位移; (b) 对数坐标位移(c) 线性坐标速度; (d) 对数坐标速度

Fig. 22. Comparison of the steady-state marginal displacement and velocity PDF at the top floor by the proposed method with the MCS and GV-GDEE solution: (a) Displacement x_10 in linear coordinates; (b) Displacement x_10 in logarithmic coordinates; (c) Velocity x_10 in linear coordinates; (d) Velocity x_10 in logarithmic coordinates

图 23: 滞回系统的典型滞回恢复力曲线: (a) 底层; (b) 顶层

Fig. 23. Typical hysteretic restoring force curve for hysteretic system: (a) Bottom floor; (b) Top floor

图 24: 均方误差与可决系数随漂移系数训练径向基函数神经网络样本数的变化: (a) 等价漂移系数 1 的均方误差; (b等价漂移系数 1 的可决系数(c) 等价扩散系数 2 的均方误差; (d等价扩散系数 2 的可决系数

Fig. 24. MSE and R-squared against number of samples in training RBFNN for EDCs: (a) MSE for EDC a_1^e(x_10,z_1); (b) R-squared for EDC a_1^e(x_10,z_1); (c) MSE for EDC a_2^e(x_10,z_1); (d) R-squared for EDC a_2^e(x_10,z_1)

图 25: 400 个样本下底层等价漂移系数的近似: (a) 基于径向基函数神经网络的等价漂移系数 1; (b基于局部加权光滑散点的等价漂移系数 1(c) 基于径向基函数神经网络的等价漂移系数 2; (d基于局部加权光滑散点的等价漂移系数 2

Fig. 25. Approximation of EDC with 400 samples at the bottom floor: (a) Approximated EDC a_1^e(x_10,z_1) by RBFNN; (b) Approximated EDC a_1^e(x_10,z_1) by Lowess; (c) Approximated EDC a_2^e(x_10,z_1) by RBFNN; (d) Approximated EDC a_2^e(x_10,z_1) by Lowess

图 26: 蒙特卡罗模拟获得的联合概率密度函数: (a) 概率密度函数三维图; (b) 概率密度函数云图

Fig. 26. Joint PDF p(x_10,z_1) obtained by MCS: (a) 3D view of the PDF; (b) Contour of the PDF

图 27: 基于所提方法的滞回位移稳态边缘概率密度函数与蒙特卡罗模拟广义密度全局演化方程解的对比: (a) 线性坐标滞回位移; (b) 对数坐标滞回位移

Fig. 27. Comparison of the steady-state marginal hysteretic displacement z_1 PDF at the top floor by the proposed method with the MCS and GV-GDEE solution: (a) Hysteretic displacement in linear coordinates; (b) Hysteretic displacement in logarithmic coordinates

作者信息 | Authors

肖扬洋 Yang-Yang Xiao

哈尔滨工业大学 (深圳) (Harbin Institute of Technology Shenzhen) 土木与环境工程学院

陈林聪 Lin-Cong Chen

华侨大学 (Huaqiao University) 土木工程学院

段忠东 Zhong-Dong Duan通讯作者 (Corresp.)
哈尔滨工业大学 (深圳) (Harbin Institute of Technology Shenzhen) 土木与环境工程学院

Email: duanzd@hit.edu.cn

孙建桥 Jian-Qiao Sun

美国加利福尼亚大学默塞德分校 (University of California Merced) 工学院

唐亚男 Ya-Nan Tang

哈尔滨工业大学 (深圳) (Harbin Institute of Technology Shenzhen) 土木与环境工程学院



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

Probab Eng Mech
国际学术期刊 Probabilistic Engineering Mechanics 创立于 1985 年,SCI 收录,JCR Q1,现任主编是美国工程院院士、中国科学院外籍院士、莱斯大学 Pol D. Spanos 教授。
 最新文章