Expected damage assessment of RC half-joints under traffic load交通荷载下钢筋混凝土半梁的预期损伤评估
Gusella F, 2024. Expected damage assessment of RC half-joints under traffic load. Probabilistic Engineering Mechanics, 77: 103656.DOI: 10.1016/j.probengmech.2024.103656
本文提出了一种交通荷载下钢筋混凝土 (reinforced concrete, RC) 半梁预期损伤估计的概率框架。该方法考虑了几何特征和力学性能的不确定性,并引入了交通荷载概率模型。将易损性曲线描述下的结构响应与基于损失设计 (loss-based design, LBD) 的财产损失相结合,所提流程不仅可评估钢筋混凝土 Gerber 桥梁的可靠性,特别是钢筋混凝土半梁的结构响应,还能识别出聚焦成本效益和效率的合适加固措施。作为风险管理策略的一环,这一改进信息水平为桥梁结构性能提供了更为合理的决策基础。将该流程应用于意大利 “Annone” 钢筋混凝土 Gerber 桥梁作为案例研究,评估其原始建造状态及假设加固措施下的表现。关键词: 损伤评估, 基于损失的设计, 风险分析, 钢筋混凝土半梁, 交通荷载A probabilistic framework for the expected damage estimation of RC half-joints under traffic load is proposed. Taking into account the uncertainties in geometrical features and mechanical properties, and introducing a probabilistic model for the traffic load, the proposed procedure links the structural response of RC half-joints, described by fragility curves, to financial consequences, according to the Loss-Based Design (LBD). In addition to the reliability of RC Gerber bridges, as impacted by the structural response of RC half-joints, the procedure allows to identify proper strengthening interventions focusing on cost-effectiveness and efficiency. The improved level of information regarding the structural performance of bridges can become the basis for more rational decision making as part of risk management strategies. The procedure is applied to the RC Gerber bridge “Annone” (Italy), which is investigated, as case study, in the as-built configuration and assuming a strengthening intervention.
Keywords: Damage assessment; Loss-based design; Risk analysis; RC half-joints; Traffic load.Fig. 1. Identification of RC half-joints
图 2: (a) 钢筋混凝土半梁的几何参数; (b) 支撑与拉杆模型Fig. 2. (a) Geometric parameters of the RC half-joint; (b) Strut-&-Tie models (in blue ties – in red struts)
图 3: 钢筋混凝土半梁的易损性曲线: (a) 既有情形; (b) 加固设计Fig. 3. RC half-joints fragility curves: (a) As-built (AB); (b) Strengthening design (SD)
图 4: 第 i 次损伤概率与平均后果函数: (a) 既有情形; (b) 加固设计Fig. 4. Probability of damage i-th and mean consequence function: (a) As-built (AB); (b) Strengthening design (SD)
图 5: (a) 所有动态称重测量的车辆重量概率; (b) 概率分布反函数与拟合数据的直线Fig. 5. (a) Probability pi of vehicle weight for all weigh-in-motion easurements; (b) Inverse of CDF and straight line [Z, Eq. (11)] fitting the data
图 6: (a) 概率分布反函数的直线拟合以及不同重现期的归一化最大荷载值; (b) 最大荷载与重现期Fig. 6. (a) Straight line (Z) fitting the inverse of the CDFQ, with the identification of z_i value for different RPs (1, 50 and 75 years); (b) Maximum load vs return period
图 7: (a) 交通荷载概率密度函数; (b) 交通荷载灾害曲线Fig. 7. (a) Traffic load PDF; (b) Traffic load hazard curve (Q - λ_Q)
图 8: (a) 钢筋混凝土半梁上作用剪力的概率密度函数; (b) 剪力灾害曲线Fig. 8. (a) PDF of the shear acting on the RC half-joint; (b) Shear force hazard curve (V_{Ed,G+Q} – λ_{VEd,G+Q})
作者信息 | Authors
意大利佛罗伦萨大学 (University of Florence) 土木与环境工程系Email: federico.gusella@unifi.it
律梦泽 M.Z. Lyu | 编辑 (Ed)
P.D. Spanos | 审校 (Rev)
陈建兵 J.B. Chen | 审校 (Rev)
彭勇波 Y.B. Peng | 审校 (Rev)