论文速递 | 考虑多目标可靠性指标的荷载与抗力系数同时校准的高效优化方法

文摘   2024-10-22 19:00   安徽  
Efficient optimization-based method for simultaneous calibration of load and resistance factors considering multiple target reliability indices

考虑多目标可靠性指标的荷载与抗力系数同时校准的高效优化方法

引用格式 | Cited by
Doan NS, Mac VH, Dinh HB, 2024. Efficient optimization-based method for simultaneous calibration of load and resistance factors considering multiple target reliability indices. Probabilistic Engineering Mechanics, 78: 103695.
DOI: 10.1016/j.probengmech.2024.103695
摘要 | Abstract
本研究引入了一类新的优化过程,用于校准极限状态设计中的概率荷与抗力因子 (load and resistance factors, LRF),从而有效适应多目标可靠性指标。鉴于直接蒙特卡罗模拟 (Monte Carlo simulation, MCS) 不适用于此问题,因此提出了一类响应面法 (response surface method, RSM) 分别近似载和抗力分量,而不拟合传统安全系数。该方法无需进行额外的隐式估计,从而提高了多目标与抗力因子校准效率。自适应边界算法进一步加强了该流程,该算法通过实时更新搜索域简化优化。通过三个算例 — 包括一个显式和两个隐式功能函数 (一个结构算例和一个岩土例) — 验证表明,该方法通过动态缩小搜索范围,以更少的迭代次数获得更精确的结果。具体地,将结果与文献中显式算例的结果以及应用于初始隐式问题的基本蒙特卡罗模拟结果进行对比,可以确认所提方法的精度。算例性能表明,结构例在十次迭代内实现了三目标校准。此外,该方法在计算岩土例的极限状态点时无需进行约一万次隐式估计。
关键词: 荷载与抗力因子校准, 可靠性分析, 响应面法, 多可靠性指标校准, 自适应边界算法
This study introduces an innovative optimization process for calibrating probabilistic load and resistance factors (LRFs) in limit state designs, effectively accommodating multiple target reliability indices. Given the impracticality of direct Monte Carlo simulations (MCS) for this task, a response surface method (RSM) is proposed to approximate load and resistance components separately rather than fitting conventional safety factors. This approach eliminates the need for additional implicit evaluations, thereby improving the efficiency of LRF calibration across multiple targets. The process is further enhanced by an adaptive boundary algorithm that updates search domains in real-time, streamlining the optimization. Validation through three examples—including one explicit and two implicit performance functions (a structural and a geotechnical example)—demonstrates that the method achieves accurate results with fewer iterations by dynamically narrowing search domains. Specifically, the accuracy of the proposed method is confirmed by comparing results with those from the literature for the explicit example and with basic MCS results applied to the initial implicit problems. Performance on the illustrative examples shows that the structural example achieves calibration for three targets within ten iterations. Additionally, this method eliminates the need for approximately ten thousand implicit evaluations when calculating limit state points for the geotechnical example.
KeywordsLoad and resistance factor calibration; Reliability analysis; Response surface method; Calibration for multiple reliability indices; Adaptive boundary algorithm.
创新点 | Highlights
  • 提出了一类简便优化方法,用于在多个安全等级下校准抗力因子

  • 抗力因子校准过程中求解多目标可靠性指标

  • 抗力的直接近似显著减少了计算时间
  • 敏感性分析减少了估计次数,从而加快了校准速度
  • Proposing a facile optimization for calibrating LRFs across multiple safety levels.

  • Multiple target reliability indices is addressed in the calibration process of LRFs.
  • Direct approximations of load and resistance significantly reduce computing time.
  • Sensitivity analysis reduces the number of evaluations, making faster calibrations.

图 1: 两变量情形的抽样点

Fig. 1. Sampling points for the case of two variables

图 2: 两个模型初值问题的必要估计次数

Fig. 2. Necessary numbers of evaluations using initial problems for the two models

图 3: 多目标优化的自适应边界算法

Fig. 3. Adaptive boundary algorithm for multiple targets optimization

图 4: 跨目标可靠性指标校准抗力因子的主要流程

Fig. 4. Main procedure of calibrating LRFs across target RIs

图 5: 四目标抗力因子校准的设计求解验证

Fig. 5. Validating of the design solutions using the LRFs calibrated for four targets

图 6: 简单显式算例的多目标可靠性指标优化

Fig. 6. Optimization for multiple target RIs of the simple explicit example

图 7: 简单显式算例的多目标可靠性指标优化

Fig. 7. Optimization for multiple target RIs of the simple explicit example

图 8: 平面桁架算例

Fig. 8. An example of a planar truss

图 9: 桁架问题的响应敏感性分析

Fig. 9. Sensitivity analysis of the responses in the truss problem

图 10: 桁架算例中采用原始蒙特卡罗模拟与基于响应面法的蒙特卡罗模拟的荷载与抗力响应面函数对比

Fig. 10. Comparison of the crude MCSs and RSMs-based MCSs applied to load and resistance RSFs in the truss example

图 11: 桁架算例的多目标可靠性指标优化

Fig. 11. Optimization for multiple target RIs of the truss example

图 12: 桁架算例可靠性指标云图搜索下的多目标可靠性指标优化

Fig. 12. Optimization for multiple target RIs of the truss example, searching on the contour plot of β

图 13: 防波堤算例

Fig. 13. A BRW example

图 14: 防波堤算例原始蒙特卡罗模拟与蒙特卡罗模拟的荷载与抗力响应面函数对比

Fig. 14. BRW example, comparison of the crude MCSs and the MCSs applied to load and resistance RSFs

图 15: 防波堤算例的抗力敏感性分析

Fig. 15. Sensitivity analysis for resistance in the BRW example

图 16: 防波堤算例的多目标可靠性指标优化

Fig. 16. Optimization for multiple target RIs of the BRW example

图 17: 防波堤算例可靠性指标云图搜索下的多目标可靠性指标优化

Fig. 17. Optimization for multiple target RIs of the BRW example, searching on the contour plot of β

作者信息 | Authors

Nhu-Son Doan

越南海事大学 (Vietnam Maritime University) 土木工程学院

Van-Ha Mac

越南交通通信大学 (University of Transport & Communications) 土木工程学院

Huu-Ba Dinh通讯作者 (Corresp.)
越南范朗大学 (Van Lang University) 土木工程学

Email: ba.dinhhuu@vlu.edu.vn



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

Probab Eng Mech
国际学术期刊 Probabilistic Engineering Mechanics 创立于 1985 年,SCI 收录,JCR Q1,现任主编是美国工程院院士、中国科学院外籍院士、莱斯大学 Pol D. Spanos 教授。
 最新文章