Compilation of wheel-rail comprehensive irregularity spectrum for subway vehicle地铁轮轨综合不平顺谱
Wang QS, Zhao H, Gong D, Qiu JL, Wu PF, Li XM, Zhu XY, Xiang HY, Wang TF, Xiao ZM, Zhou JS, 2024. Compilation of wheel-rail comprehensive irregularity spectrum for subway vehicle. Probabilistic Engineering Mechanics, 78: 103691.DOI: 10.1016/j.probengmech.2024.103691
地铁遭受的不规则激励主要是由于轨道与车轮的相互作用。然而,在早期的地铁系统设计和模拟分析中,大多仅采用传统标准轨道不平顺谱作为输入激励,忽略或低估了车轮不平顺的贡献。通过对 200000 km 地铁车轮不平顺跟踪试验数据的统计分析,我们发现车轮引起的短波不平顺远远超过了传统标准轨道不平顺。车辆运行状况受到严重影响,特别是在车轮修整期的最后阶段。针对上述问题: 首先,根据 IEC61373:2010 轴箱加速度谱推导了地铁敏感波长范围 (16.67-2500 mm),该范围与其车轮不平顺谱的波长范围非常接近 (50-2627 mm),论证了车轮不平顺谱的重要性;其次,基于大量车轮椭圆度跟踪测试数据,提出了 Johnson 非正态变换系统下车轮不平顺度分位数谱的计算方法;再次,根据车轮重修周期的不同阶段,引入车轮不平顺谱,对传统标准轨道不平顺谱的短波段进行修正,给出轮轨综合不平顺谱。关键词: 地铁, 车轮不平顺, 轨道不平顺, 谱, Johnson 非正态变换The irregularity excitation experienced by subway vehicles is mainly the result of the interaction between the track and wheel. However, in the early system design and simulation analysis of subway vehicles, most only used the traditional standard track irregularity spectrum as the input excitation, ignoring or underestimating the contribution of the wheel irregularity. Based on our statistical analysis of 200 000 km of tracking test data of subway vehicle wheel irregularities, we found that the short-wave irregularity caused by the wheels far exceeds the traditional standard track irregularity. The service condition of the vehicle is seriously affected, especially in the final stage of a wheel re-profile period. To address the above issues: Firstly, the sensitive wavelength range (16. 67–2500 mm) of subway vehicles was derived based on the axle box acceleration spectrum of IEC61373: 2010, which was very close to the wavelength range (50–2627 mm) of the wheel irregularity spectrum proposed later, demonstrating the importance of compiling a wheel irregularity spectrum; Secondly, based on the large number of tracking test data of wheel out-of-roundness, a calculation method of the wheel irregularity quantile spectrum under the Johnson non-normal transformation system was proposed; Thirdly, according to the different stages of the wheel re-profile period, the wheel irregularity spectrum is introduced to correct the short-wave segments of the traditional standard track irregularity spectrum to compile a wheel-rail comprehensive irregularity spectrum.Keywords: Subway vehicle; Wheel irregularity; Track irregularity; Spectrum; Johnson non-normal transformation.Fig. 1. General location of each test category
Fig. 2. Vibration acceleration magnitude of wheelset/axle box
Fig. 3. Vertical wheel-track dynamic model
Fig. 4. Single harmonic irregularity excitation
图 5: 综合垂直不规则激励边界谱及其 1/3 倍频程谱Fig. 5. Comprehensive vertical irregularity excitation boundary spectrum and its one-third octave spectrum
Fig. 6. Comprehensive vertical irregularity excitation boundary spectrum in the space domain and its envelope curve
图 7: 车轮椭圆度试验: (a) 试验设备安装; (b) 数据采集Fig. 7. Wheel out of roughness test: (a) Installation of testing equipment; (b) Data acquisition
Fig. 8. Wheel out of round roughness test data
Fig. 9. Space spectrum of wheel out-of-roughness
Fig. 10. Power spectral density of wheel irregularity and standard track irregularity
Fig. 11. Determining the optimal z_{e_opt} value
图 12: 各运行里程车轮不平顺分位数谱: (a) 运行里程 15800 km; (b) 运行里程 35300 km; (c) 运行里程 62800 km; (d) 运行里程 93000 km; (e) 运行里程 114000 km; (f) 运行里程 177300 km; (g) 运行里程 211900 kmFig. 12. Wheel irregularity quantile spectrum at each operating mileage: (a) Operating mileage: 15800 km; (b) Operating mileage: 35300 km; (c) Operating mileage: 62800 km; (d) Operating mileage: 93000 km; (e) Operating mileage: 114000 km; (f) Operating mileage: 177300 km; (g) Operating mileage: 211900 km
图 13: 基于正态假设与 Johnson 非正态变换的分位数谱对比分析: (a) 运行里程 15800 km; (b) 运行里程 35300 km; (c) 运行里程 62800 km; (d) 运行里程 93000 km; (e) 运行里程 114000 km; (f) 运行里程 177300 km; (g) 运行里程 211900 kmFig. 13. Comparative analysis of quantile spectrum based on normal assumptions and Johnson non-normal transformations: (a) Operating mileage: 15800 km; (b) Operating mileage: 35300 km; (c) Operating mileage: 62800 km; (d) Operating mileage: 93000 km; (e) Operating mileage: 114000 km; (f) Operating mileage: 177300 km; (g) Operating mileage: 211900 km
图 14: 轮轨综合短波不平顺谱: (a) 5% 分位数; (b) 50% 分位数; (c) 95% 分位数Fig. 14. Wheel-rail comprehensive short-wave irregularity spectrum: (a) 5% Quantile; (b) 50% Quantile; (c) 95% Quantile
Fig. 15. Comparative analysis of irregularity excitation spectrum
作者信息 | Authors
陆军军医大学 (Army Medical University) 陆军特色医学中心
陆军军医大学 (Army Medical University) 陆军特色医学中心
同济大学 (Tongji University) 铁路与城市轨道交通研究院
陆军军医大学 (Army Medical University) 陆军特色医学中心
陆军军医大学 (Army Medical University) 陆军特色医学中心
陆军军医大学 (Army Medical University) 陆军特色医学中心
陆军军医大学 (Army Medical University) 陆军特色医学中心
陆军军医大学 (Army Medical University) 陆军特色医学中心
同济大学 (Tongji University) 铁路与城市轨道交通研究院
肖忠民 Zhong-Min Xiao, 共同通讯作者 (Corresp.)新加坡南洋理工大学 (Nanyang Technological University) 机械与航天工程学院Email: mzxiao@ntu.edu.sg
周劲松 Jin-Song Zhou, 共同通讯作者 (Corresp.)同济大学 (Tongji University) 铁路与城市轨道交通研究院Email: jinsong.zhou@tongji.edu.cn
律梦泽 M.Z. Lyu | 编辑 (Ed)
P.D. Spanos | 审校 (Rev)
陈建兵 J.B. Chen | 审校 (Rev)
彭勇波 Y.B. Peng | 审校 (Rev)