论文速递 | 地铁轮轨综合不平顺谱

文摘   2024-10-19 19:00   安徽  
Compilation of wheel-rail comprehensive irregularity spectrum for subway vehicle

地铁轮轨综合不平顺谱

引用格式 | Cited by
Wang QS, Zhao H, Gong D, Qiu JL, Wu PF, Li XM, Zhu XY, Xiang HY, Wang TF, Xiao ZM, Zhou JS, 2024. Compilation of wheel-rail comprehensive irregularity spectrum for subway vehicle. Probabilistic Engineering Mechanics, 78: 103691.
DOI: 10.1016/j.probengmech.2024.103691
摘要 | Abstract
地铁遭受的不规则激励主要是由于轨道与车轮的相互作用。然而,在早期的地铁系统设计和模拟分析中,大多仅采用传统标准轨道不平顺谱作为输入激励,忽略或低估了车轮不平顺的贡献。通过对 200000 km 地铁车轮不平顺跟踪试验数据的统计分析,我们发现车轮引起的短波不平顺远远超过了传统标准轨道不平顺。车辆运行状况受到严重影响,特别是在车轮修整期的最后阶段。针对上述问题: 首先,根据 IEC61373:2010 轴箱加速度谱推导了地铁敏感波长范围 (16.67-2500 mm),该范围与其车轮不平顺谱的波长范围非常接近 (50-2627 mm),论证了车轮不平顺谱的重要性;其次,基于大量车轮椭圆度跟踪测试数据,提出了 Johnson 非正态变换系统下车轮不平顺度分位数谱的计算方法;再次,根据车轮重修周期的不同阶段,引入车轮不平顺谱,对传统标准轨道不平顺谱的短波段进行修正,给出轮轨综合不平顺谱。
关键词: 地铁, 车轮不平顺, 轨道不平顺, 谱, Johnson 非正态变换
The irregularity excitation experienced by subway vehicles is mainly the result of the interaction between the track and wheel. However, in the early system design and simulation analysis of subway vehicles, most only used the traditional standard track irregularity spectrum as the input excitation, ignoring or underestimating the contribution of the wheel irregularity. Based on our statistical analysis of 200 000 km of tracking test data of subway vehicle wheel irregularities, we found that the short-wave irregularity caused by the wheels far exceeds the traditional standard track irregularity. The service condition of the vehicle is seriously affected, especially in the final stage of a wheel re-profile period. To address the above issues: Firstly, the sensitive wavelength range (16. 67–2500 mm) of subway vehicles was derived based on the axle box acceleration spectrum of IEC61373: 2010, which was very close to the wavelength range (50–2627 mm) of the wheel irregularity spectrum proposed later, demonstrating the importance of compiling a wheel irregularity spectrum; Secondly, based on the large number of tracking test data of wheel out-of-roundness, a calculation method of the wheel irregularity quantile spectrum under the Johnson non-normal transformation system was proposed; Thirdly, according to the different stages of the wheel re-profile period, the wheel irregularity spectrum is introduced to correct the short-wave segments of the traditional standard track irregularity spectrum to compile a wheel-rail comprehensive irregularity spectrum.
KeywordsSubway vehicle; Wheel irregularity; Track irregularity; Spectrum; Johnson non-normal transformation.
图 1:每一试验类别的一般位置

Fig. 1. General location of each test category

图 2: 轮组/轴箱的振动加速度幅值

Fig. 2. Vibration acceleration magnitude of wheelset/axle box

图 3: 垂直轮轨动力模型

Fig. 3. Vertical wheel-track dynamic model

图 4: 单次谐波不平顺激励

Fig. 4. Single harmonic irregularity excitation

图 5: 综合垂直不规则激励边界谱及其 1/3 倍频程谱

Fig. 5. Comprehensive vertical irregularity excitation boundary spectrum and its one-third octave spectrum

图 6: 空间域综合竖向不规则激励边界谱及其包线

Fig. 6. Comprehensive vertical irregularity excitation boundary spectrum in the space domain and its envelope curve

图 7: 车轮椭圆度试验: (a) 试验设备安装; (b) 数据采集

Fig. 7. Wheel out of roughness test: (a) Installation of testing equipment; (b) Data acquisition

图 8: 车轮圆度试验数据

Fig. 8. Wheel out of round roughness test data

图 9: 车轮椭圆度空间谱

Fig. 9. Space spectrum of wheel out-of-roughness

图 10: 车轮不平顺与标准轨道不平顺功率谱密度

Fig. 10. Power spectral density of wheel irregularity and standard track irregularity

图 11: 确定最优分位点值

Fig. 11. Determining the optimal z_{e_opt} value

图 12: 各运行里程车轮不平顺分位数谱: (a) 运行里程 15800 km; (b) 运行里程 35300 km; (c) 运行里程 62800 km; (d) 运行里程 93000 km; (e) 运行里程 114000 km; (f) 运行里程 177300 km; (g) 运行里程 211900 km

Fig. 12. Wheel irregularity quantile spectrum at each operating mileage: (a) Operating mileage: 15800 km; (b) Operating mileage: 35300 km; (c) Operating mileage: 62800 km; (d) Operating mileage: 93000 km; (e) Operating mileage: 114000 km; (f) Operating mileage: 177300 km; (g) Operating mileage: 211900 km

图 13: 基于正态假设与 Johnson 非正态变换的分位数谱对比分析: (a) 运行里程 15800 km; (b) 运行里程 35300 km; (c) 运行里程 62800 km; (d) 运行里程 93000 km; (e) 运行里程 114000 km; (f) 运行里程 177300 km; (g) 行里程 211900 km

Fig. 13. Comparative analysis of quantile spectrum based on normal assumptions and Johnson non-normal transformations: (a) Operating mileage: 15800 km; (b) Operating mileage: 35300 km; (c) Operating mileage: 62800 km; (d) Operating mileage: 93000 km; (e) Operating mileage: 114000 km; (f) Operating mileage: 177300 km; (g) Operating mileage: 211900 km


图 14: 轮轨综合短波不平顺谱: (a) 5% 分位数; (b) 50% 分位数; (c) 95% 分位数

Fig. 14. Wheel-rail comprehensive short-wave irregularity spectrum: (a) 5% Quantile; (b) 50% Quantile; (c) 95% Quantile

图 15: 不平顺激励谱的对比分析

Fig. 15. Comparative analysis of irregularity excitation spectrum

作者信息 | Authors

王秋实 Qiu-Shi Wang

陆军军医大学 (Army Medical University) 陆军特色医学中心

赵辉 Hui Zhao

陆军军医大学 (Army Medical University) 陆军特色医学中心

宫岛 Dao Gong

同济大学 (Tongji University) 铁路与城市轨道交通研究院

邱金龙 Jin-Long Qiu

陆军军医大学 (Army Medical University) 陆军特色医学中心

吴鹏飞 Peng-Fei Wu

陆军军医大学 (Army Medical University) 陆军特色医学中心

李晓明 Xiao-Ming Li

陆军军医大学 (Army Medical University) 陆军特色医学中心

Xi-Yang Zhu

陆军军医大学 (Army Medical University) 陆军特色医学中心

Hong-Yi Xiang

陆军军医大学 (Army Medical University) 陆军特色医学中心

王腾飞 Teng-Fei Wang

同济大学 (Tongji University) 铁路与城市轨道交通研究院

肖忠民 Zhong-Min Xiao, 共同通讯作者 (Corresp.)
新加坡南洋理工大学 (Nanyang Technological University) 机械与航天工程学院

Email: mzxiao@ntu.edu.sg

周劲松 Jin-Song Zhou共同通讯作者 (Corresp.)
同济大学 (Tongji University) 铁路与城市轨道交通研究院

Email: jinsong.zhou@tongji.edu.cn



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

Probab Eng Mech
国际学术期刊 Probabilistic Engineering Mechanics 创立于 1985 年,SCI 收录,JCR Q1,现任主编是美国工程院院士、中国科学院外籍院士、莱斯大学 Pol D. Spanos 教授。
 最新文章