论文速递 | ​​​基于径向基函数神经网络方法的 Gauss 白噪声激励下非线性惯性振子响应

文摘   2024-09-22 19:00   德国  
Response of Gaussian white noise excited oscillators with inertia nonlinearity based on the RBFNN method

基于径向基函数神经网络方法的 Gauss 白噪声激励下非线性惯性振子响应

引用格式 | Cited by
Hu YQ, Ge G, 2024. Response of Gaussian white noise excited oscillators with inertia nonlinearity based on the RBFNN method. Probabilistic Engineering Mechanics, 77: 103637.
DOI: 10.1016/j.probengmech.2024.103637
摘要 | Abstract
尽管随机平均法对于求解宽带噪声激励下强非线性刚度振子响应非常有效,但其在处理强非线性惯性 (即坐标相关质量) 或多重势井振子时似乎无效。为解决这一局限性,本文采用径向基函数神经网络 (radial basis function neural network, RBFNN) 算法来预测同时具有强非线性惯性和多重势井的振子响应。模型选择常见的 Gauss 函数作为径向基函数。然后,将近似稳态概率密度函数 (probability density function, PDF) 表示为加权 Gauss 基函数 (Gaussian basis function, GBF) 之和。采用 Lagrange 乘子法最小化 Fokker-Plank-Kolmogorov (FPK) 方程近似解的平方误差,从而确定最佳权重系数。通过三个算例展示了非线性惯性和势井如何影响振子响应。提供了蒙特卡罗模拟 (Monte Carlo simulation, MCS) 与径向基函数神经网络预测的均方误差。结果表明,径向基函数神经网络的预测与蒙特卡模拟结果完美一致。
关键词径向基函数神经网络, 非线性惯性, Gauss 白噪声
Although stochastic averaging methods have proven effective in solving the responses of nonlinear oscillators with a strong stiffness term under broadband noise excitations, these methods appear to be ineffective when dealing with oscillators that have a strong inertial nonlinearity term (also known as coordinate-dependent mass) or multiple potential wells. To address this limitation, a radial basis function neural network (RBFNN) algorithm is applied to predict the responses of oscillators with both a strong inertia nonlinearity term and multiple potential wells. The well-known Gaussian functions are chosen as radial basis functions in the model. Then, the approximate stationary probability density function (PDF) is expressed as the sum of Gaussian basis functions (GBFs) with weights. The squared error of the approximate solution for the Fokker-Plank-Kolmogorov (FPK) function is minimized using the Lagrange multiplier method to determine optimal weight coefficients. Three examples are presented to demonstrate how inertia nonlinearity terms and potential wells affect the responses. The mean square errors between Monte Carlo simulations (MCS) and RBFNN predictions are provided. The results indicate that RBFNN predictions align perfectly with those obtained from MCS.
KeywordsRadial basis function neural network; Inertia nonlinearity; Gaussian white noise.

图 1: 径向基函数神经网络的结构

Fig. 1. Structure of the RBFNN

图 2: 近似拟合示意图

Fig. 2. Diagrammatic sketch of approximate fitting

图 3: 联合概率密度

Fig. 3. Joint probability density p(x,y)

图 4: 概率密度

Fig. 4. Probability density p(x) and p(y)

图 5: Hamilton 函数的相图

Fig. 5. Phase portrait of the Hamiltonian function

图 6: 三势井

Fig. 6. Triple-well potential energy

图 7: 三井系统的联合概率密度

Fig. 7. Joint probability density p(x,y) of the triple-well system

图 8: 三井系统的概率密度

Fig. 8. Probability density p(x) and p(y) of the triple well system

图 9: 非对称双势井

Fig. 9. Asymmetric double-well potential energy

图 10: 双井系统的联合概率密度

Fig. 10. Joint probability density p(x,y) of the double welled system

图 11: 双井系统的概率密度

Fig. 11. Probability density p(x) and p(y) of the double well system

作者信息 | Authors

Yong-Qi Hu

天津工业大学 (Tiangong University) 机械学院

葛根 Gen Ge通讯作者 (Corresp.)
天津工业大学 (Tiangong University航空航天学院

Email: gegen@tiangong.edu.cn



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

Probab Eng Mech
国际学术期刊 Probabilistic Engineering Mechanics 创立于 1985 年,SCI 收录,JCR Q1,现任主编是美国工程院院士、中国科学院外籍院士、莱斯大学 Pol D. Spanos 教授。
 最新文章