论文速递 | ​​​疲劳差异的参数化评估

文摘   2024-09-19 19:00   德国  
开源获取 | Open Access
On the parametric assessment of fatigue disparities

疲劳差异的参数化评估

引用格式 | Cited by
Kufoin EN, Susmel L, 2024. On the parametric assessment of fatigue disparities. Probabilistic Engineering Mechanics, 77: 103651.
DOI: 10.1016/j.probengmech.2024.103651
摘要 | Abstract
整合不同来源的疲劳数据集是提高疲劳评估和设计可靠度的有效策略,同时还能降低成本并缩短时间。统计参数分析方法可应用于疲劳数据集,以确定其在统计学上差异显著 (不相似) 与否 (相似)。本文系统地采用统计参数检验假设来评估显著性。为验证此方法,本文以不同缺口试件生成的疲劳数据集为案例研究,孔径范围为 0-3 mm,同时结合文献数据。尤其是使用总应力来确保仅通过统计分析识别疲劳数据集的差异。该方法对缺口几何形状差异小至 1 mm 的情形表现良好,并且能识别铸铁的缺口不敏感性。因此,该方法可根据统计参数而非其他物理参数来区分疲劳数据集。
关键词统计学, 显著性, 检验统计量, 共线性, 疲劳
Efficiently merging fatigue datasets from diverse sources has proven to be a strategic approach for enhancing the reliability of fatigue assessment and design within industry, while concurrently streamlining costs and time. Statistical parametric analysis is an approach that can be applied to fatigue datasets to determine whether the datasets can be deemed statistically significant (different) or statistically insignificant (similar). This paper systematically employed statistical parametric test-statistic hypotheses to assess significance. To validate this approach the paper used as a case study, fatigue data sets generated from varied notched specimens with hole diameters ranging from 0 mm to 3 mm, in addition to data from the literature. In particular, gross stresses were utilized to ensure that the only means to identify differences in the fatigue datasets was through statistical analysis. This approach was observed to work well for geometries with differences in notch geometry as small as 1 mm and was able to identify notch insensitivity in cast iron. Thus, this method can be used to differentiate fatigue datasets based on statistical parameters rather than other physical parameters.
KeywordsStatistical; Significance; Test-statistic; Collinear; Fatigue.
创新点 | Highlights
  • 回顾了用于合并数据集和对比 S-N 曲线的统计方法

  • 分析了利用统计方法检测 S-N 曲线或数据集差异的挑战

  • 分析扩展为对比 S-N 曲线的推荐策略
  • 基于缺口试验数据集和文献数据,评估统计显著性方法
  • Statistical approaches used to merge datasets and compare S-N curves are reviewed
  • Analysing the challenge of utilizing statistical approaches to detect variations in S-N curves or datasets is reviewed

  • The analysis expands into recommended strategies for comparing S-N curves
  • Statical significance approach is assessed based on experimental data sets from notches and data from literature
图 1: 检验两条 S-N 曲线统计显著性的流程图

Fig. 1. Flow chart to illustrate how to test the statistical significance of two S-N curves

图 2: 样本几何形状: (a) 平面图; (b) 带给定直径的圆形缺口

Fig. 2. Specimen geometry in mm: (a) Plane; (b) Notched with a circular notch of diameter

图 3: 疲劳试验后失效的样品

Fig. 3. Some samples of failed specimens after fatigue tests

图 4: 95% 置信水平与 5% 显著性水平的散点带: (a) 钢及其含 1 mm 直径缺口的样品; (b) 钢及其含 2 mm 直径缺口的样品(c) 钢及其含 3 mm 直径缺口的样品(d) 含 1, 2 mm 直径缺口的钢样品(e) 含 1, 3 mm 直径缺口的钢样品(f) 含 2, 3 mm 直径缺口的钢样品

Fig. 4. Scatter bands at 95% level of confidence and 5% level of significance: (a) S and S_1 mm; (b) S and S_2 mm; (c) S and S_3 mm; (d) S_1 mm and S_2 mm curves; (e) S_1 mm and S_3 mm curves; (f) S_2 mm and S_3 mm curves

图 5: 95% 置信水平与 5% 显著性水平的散点带: (a) 黄铜及其含 1 mm 直径缺口的样品; (b) 黄铜及其含 2 mm 直径缺口的样品(c) 黄铜及其含 3 mm 直径缺口的样品(d) 含 1, 2 mm 直径缺口的黄铜样品(e) 含 1, 3 mm 直径缺口的黄铜样品(f) 含 2, 3 mm 直径缺口的黄铜样品

Fig. 5. Scatter bands at 95% level of confidence and 5% level of significance: (a) Br and Br_1 mm; (b) Br and B_2 mm; (c) Br and Br_3 mm; (d) Br_1 mm and Br_2 mm; (e) Br_1 mm and Br_3 mm; (f) Br_2 mm and Br_3 mm curves

图 6: 95% 置信水平与 5% 显著性水平的散点带: (a) 铸铁及其含 1 mm 直径缺口的样品; (b) 铸铁及其含 2 mm 直径缺口的样品(c) 铸铁及其含 3 mm 直径缺口的样品(d) 含 1, 2 mm 直径缺口的铸铁样品(e) 含 1, 3 mm 直径缺口的铸铁样品(f) 含 2, 3 mm 直径缺口的铸铁样品

Fig. 6. Scatter bands at 95% level of confidence and 5% level of significance for: a) CI and CI_1 mm, b) CI and CI_2 mm, c) CI and CI_3 mm, d) CI_1 mm and CI_2 mm, e) CI_1 mm and CI_3 mm and f) CI-2mm and CI_3 mm

图 7: Louks 与 Susmel 给出的锻造 (悬臂和弯曲) 重要数据集在 95% 置信水平与 5% 显著性水平下的散点图

Fig. 7. Scatter band at 95% level of confidence and 5% level of significance for significant data set of as-forged (cantilever) and as-forged (bending) in Louks & Susmel (2015)

作者信息 | Authors

Elvis N. Kufoin

英国谢菲尔德大学 (University of Sheffield) 土木与结构工程系

Luca Susmel通讯作者 (Corresp.)
英国谢菲尔德大学 (University of Sheffield) 土木与结构工程系

Email: l.susmel@sheffield.ac.uk



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

Probab Eng Mech
国际学术期刊 Probabilistic Engineering Mechanics 创立于 1985 年,SCI 收录,JCR Q1,现任主编是美国工程院院士、中国科学院外籍院士、莱斯大学 Pol D. Spanos 教授。
 最新文章