论文速递 | ​​多轴随机冲击与振动荷载下预应力复合结构层间滑移失效的可靠性建模

文摘   2024-09-16 19:00   西班牙  
Reliability modeling of pre-stressed composite structures subject to interlayer slip failure under multi-axial random impact and vibration loads

多轴随机冲击与振动荷载下预应力复合结构层间滑移失效的可靠性建模

引用格式 | Cited by
Duan XC, Shen JP, Xie CY, He JJ, Guan XF, 2024. Reliability modeling of pre-stressed composite structures subject to interlayer slip failure under multi-axial random impact and vibration loads. Probabilistic Engineering Mechanics, 77: 103650.
DOI: 10.1016/j.probengmech.2024.103650
摘要 | Abstract
本研究提出了一种层间滑移失效情形下预应力金属/聚合物/金属复合结构的时变可靠性模型,该模型可用于预测结构在多轴随机多峰冲击载和传输振动下的整体失效概率。提出了一个均匀调制的多重 Gauss 包络模型,用于模拟随机多峰冲击载,并采用逆抽样方法模拟随机传输振动。基于多轴振动载下的接触面摩擦机理和应力松弛本构模型,提出了一个层间滑移物理模型。通过用户材料子程序在有限元法框架中实现层间滑移物理建模,可处理结构几何效应,并获得结构任意位置的可靠度。通过工程实例验证了所提方法。结果表明,该可靠性评估方法为计算复合结构在多轴冲击载和振动下时变可靠度提供了一种可行且系统化的程序。
关键词预应力复合结构, 层间滑移, 随机冲击, 振动, 可靠性
A time-dependent reliability model for pre-stressed metal/polymer/metal composite structures subject to interlayer slip failure is developed in this study, allowing for predicting the probability of failure of the whole structure under multi-axial random multi-peak impact loads and transport vibration. A multi-Gaussian envelope model with uniform modulations is proposed to model random multi-peak impact loads, and the inverse sampling method is employed to model random transport vibration. An interlayer slip physics model is developed based on the contact surface friction mechanism under multi-axial vibration load and the stress-relaxation constitutive model. By implementing the interlayer slip physics model in the finite element method framework via the user-material routine, the geometry effect of the structure can be dealt with, and the reliabilities at an arbitrary location of the structure can be obtained. The proposed method is demonstrated using engineering examples. The results show that the proposed reliability assessment method provides a viable and systematical procedure of computing the time-dependent reliability of composite structures as a whole under multi-axial impact loads and vibrations.
KeywordsPre-stressed composite structures; Interlayer slip; Random impact; Vibration; Reliability.

图 1: 工程强运动数据库中的多峰冲击载: (a) x 轴; (b) y 轴; (c) z 轴

Fig. 1. Multi-peak impact loads from the Engineering Strong Motion database: (a) x-axis; (b) y-axis; (c) z-axis

图 2: 三个方向不同 Gauss 分量数下多重 Gauss 模型的 Bayes 信息准则值

Fig. 2. BIC values for the multi-Gaussian model with different number of Gaussian components under three directions

图 3: 模型拟合结果、局部峰值与实际数据(a) x 轴; (b) y 轴; (c) z 轴

Fig. 3. Model fitting results, local peak values, and actual data: (a) x-axis; (b) y-axis; (c) z-axis

图 4: 自相关系数的平均拟合(a) x 轴; (b) y 轴; (c) z 轴

Fig. 4. Mean fit of the autocorrelation coefficient by Eq. (8): (a) x-axis; (b) y-axis; (c) z-axis

图 5: 多峰冲击载模型预测结果与实际数据的对比(a) x 轴; (b) y 轴; (c) z 轴

Fig. 5. Prediction results of the multi-peak impact load model by Eq. (7) and comparisons with the actual data: (a) x-axis; (b) y-axis; (c) z-axis

图 6: 归一化 Husid 函数预测的平均曲线与实际数据的对比(a) x 轴; (b) y 轴; (c) z 轴

Fig. 6. Comparison of the mean curves predicted by the normalized Husid function with the actual data: (a) x-axis; (b) y-axis; (c) z-axis

图 7: 所提模型与两个参考模型获得的预测均值与方差值和实际数据对比: (a) 均值; (b) 方差

Fig. 7. Comparison of the predicted mean and variance values obtained using the proposed and the two reference models with the actual data: (a) Mean value; (b) Variance

图 8: 所提模型与两个参考模型的归一化 Husid 函数平均绝对误差对比

Fig. 8. Comparisons of MAE in the normalized Husid function between the proposed model and two reference models

图 9: Hanly 报告的传输振动数据(a) x 轴; (b) y 轴; (c) z 轴

Fig. 9. Transport vibration data reported in Hanly (2016): (a) x-axis; (b) y-axis; (c) z-axis

图 10: 逆抽样过程的示意图

Fig. 10. Schematic diagram of inverse sampling process

图 11: 基于逆抽样方法的传输振动模拟结果(a) x 轴; (b) y 轴; (c) z 轴

Fig. 11. Simulated results for the transport vibration using the inverse sampling method: (a) x-axis; (b) y-axis; (c) z-axis

图 12: 100 组传输振动预测数据的均值与方差和实际数据的对比

Fig. 12. Comparison of mean and variance values of 100 sets of predicted data for transport vibration with actual data

图 13: 预应力金属/聚合物/金属结构的示意图

Fig. 13. Schematic diagram of a pre-stressed metal/polymer/metal structure

图 14: 方向余弦的示意图

Fig. 14. Schematic diagram of direction cosine

图 15: 伪代码计算过程的流程图

Fig. 15. Flowchart of the computational procedure with pseudo codes

图 16: 板材结构的示意图

Fig. 16. Schematic diagram of the plate structure

图 17: 基于 1e6 次蒙特卡罗样本获得的时变失效概率均值与 95% 置信区间

Fig. 17. Mean and 95% confidence interval (C.I.) of the time-dependent POF obtained using 1e6 MC instances

图 18: 失效概率蒙特卡罗结果的收敛性验证

Fig. 18. Verification of the convergence of MC results on POF

图 19: 圆柱结构的几何形状与尺寸: (a) 侧视图; (b) 顶视图; (c) 装配图; (d) 有限元网格

Fig. 19. Geometry and dimension of the cylinder structure: (a) Side view; (b) Top view; (c) Assembly drawing; (d) FE mesh

图 20: 聚合物层的预应力结果: (a) 1e-4 s; (b) 86.4 s

Fig. 20. Pre-stress results of the polymer layer: (a) Initial at t = 1e-4 s; (b) Remaining at t = 86.4 s

图 21: 多峰冲击与传输振动下失效概率云图

Fig. 21. Contour maps of POF under multi-peak impact and transport vibration loads: (a) = 0 s; (b) t = 30 s; (c) = 60 s; (d) t = 86.4 s

图 22: 节点失效概率均值与 95% 置信区间: (a) 节点 1; (b) 节点 2; (c) 整体结构的平均失效概率包络线

Fig. 22. Mean and 95% confidence interval of POF at nodal positions: (a) Node 1; (b) Node 2; (c) Mean POF envelope of the whole structure

作者信息 | Authors

段晓畅 Xiao-Chang Duan

中国工程物理研究院 (China Academy of Engineering Physics) 研究生院

Jun-Peng Shan

中国工程物理研究院 (China Academy of Engineering Physics研究生院

谢朝阳 Chao-Yang Xie

中国工程物理研究院 (China Academy of Engineering Physics总体工程研究所

何晶靖 Jing-Jing He

北京航空航天大学 (Beihang University可靠性与系统工程学院

关雪飞 Xue-Fei Guan通讯作者 (Corresp.)
中国工程物理研究院 (China Academy of Engineering Physics研究生院

Email: xfguan@gscaep.ac.cn



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

Probab Eng Mech
国际学术期刊 Probabilistic Engineering Mechanics 创立于 1985 年,SCI 收录,JCR Q1,现任主编是美国工程院院士、中国科学院外籍院士、莱斯大学 Pol D. Spanos 教授。
 最新文章