Reliability modeling of pre-stressed composite structures subject to interlayer slip failure under multi-axial random impact and vibration loads多轴随机冲击与振动荷载下预应力复合结构层间滑移失效的可靠性建模
Duan XC, Shen JP, Xie CY, He JJ, Guan XF, 2024. Reliability modeling of pre-stressed composite structures subject to interlayer slip failure under multi-axial random impact and vibration loads. Probabilistic Engineering Mechanics, 77: 103650.DOI: 10.1016/j.probengmech.2024.103650
本研究提出了一种层间滑移失效情形下预应力金属/聚合物/金属复合结构的时变可靠性模型,该模型可用于预测结构在多轴随机多峰冲击荷载和传输振动下的整体失效概率。提出了一个均匀调制的多重 Gauss 包络模型,用于模拟随机多峰冲击荷载,并采用逆抽样方法模拟随机传输振动。基于多轴振动荷载下的接触面摩擦机理和应力松弛本构模型,提出了一个层间滑移物理模型。通过用户材料子程序在有限元法框架中实现层间滑移物理建模,可处理结构几何效应,并获得结构任意位置的可靠度。通过工程实例验证了所提方法。结果表明,该可靠性评估方法为计算复合结构在多轴冲击荷载和振动下时变可靠度提供了一种可行且系统化的程序。关键词: 预应力复合结构, 层间滑移, 随机冲击, 振动, 可靠性A time-dependent reliability model for pre-stressed metal/polymer/metal composite structures subject to interlayer slip failure is developed in this study, allowing for predicting the probability of failure of the whole structure under multi-axial random multi-peak impact loads and transport vibration. A multi-Gaussian envelope model with uniform modulations is proposed to model random multi-peak impact loads, and the inverse sampling method is employed to model random transport vibration. An interlayer slip physics model is developed based on the contact surface friction mechanism under multi-axial vibration load and the stress-relaxation constitutive model. By implementing the interlayer slip physics model in the finite element method framework via the user-material routine, the geometry effect of the structure can be dealt with, and the reliabilities at an arbitrary location of the structure can be obtained. The proposed method is demonstrated using engineering examples. The results show that the proposed reliability assessment method provides a viable and systematical procedure of computing the time-dependent reliability of composite structures as a whole under multi-axial impact loads and vibrations.Keywords: Pre-stressed composite structures; Interlayer slip; Random impact; Vibration; Reliability.图 1: 工程强运动数据库中的多峰冲击荷载: (a) x 轴; (b) y 轴; (c) z 轴Fig. 1. Multi-peak impact loads from the Engineering Strong Motion database: (a) x-axis; (b) y-axis; (c) z-axis
图 2: 三个方向不同 Gauss 分量数下多重 Gauss 模型的 Bayes 信息准则值Fig. 2. BIC values for the multi-Gaussian model with different number of Gaussian components under three directions
图 3: 模型拟合结果、局部峰值与实际数据: (a) x 轴; (b) y 轴; (c) z 轴Fig. 3. Model fitting results, local peak values, and actual data: (a) x-axis; (b) y-axis; (c) z-axis
图 4: 自相关系数的平均拟合: (a) x 轴; (b) y 轴; (c) z 轴Fig. 4. Mean fit of the autocorrelation coefficient by Eq. (8): (a) x-axis; (b) y-axis; (c) z-axis
图 5: 多峰冲击荷载模型预测结果与实际数据的对比: (a) x 轴; (b) y 轴; (c) z 轴Fig. 5. Prediction results of the multi-peak impact load model by Eq. (7) and comparisons with the actual data: (a) x-axis; (b) y-axis; (c) z-axis
图 6: 归一化 Husid 函数预测的平均曲线与实际数据的对比: (a) x 轴; (b) y 轴; (c) z 轴Fig. 6. Comparison of the mean curves predicted by the normalized Husid function with the actual data: (a) x-axis; (b) y-axis; (c) z-axis
图 7: 所提模型与两个参考模型获得的预测均值与方差值和实际数据对比: (a) 均值; (b) 方差Fig. 7. Comparison of the predicted mean and variance values obtained using the proposed and the two reference models with the actual data: (a) Mean value; (b) Variance
图 8: 所提模型与两个参考模型的归一化 Husid 函数平均绝对误差对比Fig. 8. Comparisons of MAE in the normalized Husid function between the proposed model and two reference models
图 9: Hanly 报告的传输振动数据: (a) x 轴; (b) y 轴; (c) z 轴Fig. 9. Transport vibration data reported in Hanly (2016): (a) x-axis; (b) y-axis; (c) z-axis
Fig. 10. Schematic diagram of inverse sampling process
图 11: 基于逆抽样方法的传输振动模拟结果: (a) x 轴; (b) y 轴; (c) z 轴Fig. 11. Simulated results for the transport vibration using the inverse sampling method: (a) x-axis; (b) y-axis; (c) z-axis
图 12: 100 组传输振动预测数据的均值与方差和实际数据的对比Fig. 12. Comparison of mean and variance values of 100 sets of predicted data for transport vibration with actual data
Fig. 13. Schematic diagram of a pre-stressed metal/polymer/metal structure
Fig. 14. Schematic diagram of direction cosine
Fig. 15. Flowchart of the computational procedure with pseudo codes
Fig. 16. Schematic diagram of the plate structure
图 17: 基于 1e6 次蒙特卡罗样本获得的时变失效概率均值与 95% 置信区间Fig. 17. Mean and 95% confidence interval (C.I.) of the time-dependent POF obtained using 1e6 MC instances
Fig. 18. Verification of the convergence of MC results on POF
图 19: 圆柱结构的几何形状与尺寸: (a) 侧视图; (b) 顶视图; (c) 装配图; (d) 有限元网格Fig. 19. Geometry and dimension of the cylinder structure: (a) Side view; (b) Top view; (c) Assembly drawing; (d) FE mesh
图 20: 聚合物层的预应力结果: (a) 1e-4 s; (b) 86.4 sFig. 20. Pre-stress results of the polymer layer: (a) Initial at t = 1e-4 s; (b) Remaining at t = 86.4 s
Fig. 21. Contour maps of POF under multi-peak impact and transport vibration loads: (a) t = 0 s; (b) t = 30 s; (c) t = 60 s; (d) t = 86.4 s
图 22: 节点失效概率均值与 95% 置信区间: (a) 节点 1; (b) 节点 2; (c) 整体结构的平均失效概率包络线Fig. 22. Mean and 95% confidence interval of POF at nodal positions: (a) Node 1; (b) Node 2; (c) Mean POF envelope of the whole structure
作者信息 | Authors
中国工程物理研究院 (China Academy of Engineering Physics) 研究生院
中国工程物理研究院 (China Academy of Engineering Physics) 研究生院
中国工程物理研究院 (China Academy of Engineering Physics) 总体工程研究所
北京航空航天大学 (Beihang University) 可靠性与系统工程学院
关雪飞 Xue-Fei Guan, 通讯作者 (Corresp.)中国工程物理研究院 (China Academy of Engineering Physics) 研究生院Email: xfguan@gscaep.ac.cn
律梦泽 M.Z. Lyu | 编辑 (Ed)
P.D. Spanos | 审校 (Rev)
陈建兵 J.B. Chen | 审校 (Rev)
彭勇波 Y.B. Peng | 审校 (Rev)