论文速递 | 纤维增强型复合材料非精确多尺度不确定性量化框架

文摘   2024-10-17 19:18   江苏  
An imprecise multiscale uncertainty quantification framework for fiber reinforced composites

纤维增强型复合材料非精确多尺度不确定性量化框架

引用格式 | Cited by
Zhao HD, Zhou CC, 2024. An imprecise multiscale uncertainty quantification framework for fiber reinforced composites. Probabilistic Engineering Mechanics, 78: 103686.
DOI: 10.1016/j.probengmech.2024.103686
摘要 | Abstract
本研究从复合材料多尺度分析角度考虑不确定性,重点关注纤维增强型复合材料雷达罩结构的可靠性和全局灵敏度分析。基于复合材料多尺度分析方法估算宏观参数,并构建复合材料结构的宏观可靠性分析模型。从 “自下而上” 和 “自上而下” 两个角度深入探讨材料性能传递机制,从而揭示其内在规律。考虑由于缺乏变量分布信息,引入非精确概率模型来表征多尺度分析中的不确定性因素。采用嵌套优化计算方法获得可靠性和灵敏度分析结果。为了确保计算精度和计算效率,采用支持向量机模型来解决分析过程中的回归和分类问题。在非精确概率框架下的可靠性和灵敏度分析有助于工程师识别关键影响因素,从而指导复合材料雷达罩结构设计。
关键词: 复合材料, 多尺度分析, 概率盒, 不确定性量化, 雷达罩结构
The study focuses on the reliability and global sensitivity analysis of fiber-reinforced composite radome structures, considering uncertainty from a multiscale perspective. Macroparameters are estimated based on microparameters using the multiscale analysis method for composites, and a reliability analysis model of the composite structure at the macrolevel is constructed. The material performance mechanism is explored in depth, both "from bottom to top" and "from top to bottom", to reveal its inherent laws. Due to insufficient variable distribution information, an imprecise probabilistic model is introduced to characterize the uncertainty effect in multiscale composite analysis. A nested optimization calculation method is applied to obtain reliability and sensitivity results. To ensure both calculation accuracy and efficiency, the regression and classification problems encountered in the proposed framework are addressed using two support vector machine models. The reliability and sensitivity analysis under the imprecise probabilistic framework can help engineers identify significant influential factors, thereby guiding the design of composite radome structures.
KeywordsComposites; Multiscale analysis; P-box; Uncertainty quantification; Radome structure.
创新点 | Highlights
  • 构建纤维增强复合材料的不确定性量化框架

  • 通过多尺度分析深入探讨材料性能传递机制

  • 引入支持向量机来捕捉参数信息
  • 采用嵌套优化计算方法获得可靠度及灵敏度结果
  • 应用于复合材料雷达罩结构以表明有效性和准确性
  • An uncertainty quantification framework for fiber reinforced composites is constructed.

  • The material performance mechanism is deeply explored based on multi-scale analysis.
  • The support vector machine is introduced for capturing parameters information.

  • A nested optimization calculation method is applied to obtain the reliability and sensitivity results.
  • The composites radome structure is studied to prove efficiency and accuracy.

图 1: 非精确概率模型的概率密度函数与概率分布函数

Fig. 1. PDF and CDF of the imprecise probabilistic model

图 2: 六面体代表性体积元模型

Fig. 2. Hexahedron RVE model

图 3: 两类支持向量机模型: 分类与回归

Fig. 3. Two SVM models: classification and regression

图 4: 代表性体积元网格收敛性分析

Fig. 4. Mesh convergence analysis for RVE

图 5: 复合材料多尺度分析流程

Fig. 5. Procedure for analyzing multiscale composites

图 6: 计算方法流程图

Fig. 6. Flowchart illustrating the calculation method

图 7: 多尺度复合材料基于方差的全局灵敏度分析结果

Fig. 7. Variance-based GSA results for multiscale composites

图 8: 复合材料层合板不同失效模式下的载荷形式

Fig. 8. Load conditions for the laminate structure under different failure modes

图 9: 复合材料层合板失效概率计算结果

Fig. 9. Failure probability results for the composites laminate

图 10: 复合材料层合板基于失效概率的全局灵敏度指标计算结果

Fig. 10. GSA results based on failure probability for the composite laminate

图 11: 复合材料雷达罩有限元模型

Fig. 11. FEA model of the radome structure

图 12: 复合材料雷达罩结构失效概率计算结果

Fig. 12. Failure probability results for the radome structure

图 13: 复合材料雷达罩结构基于失效概率的全局灵敏度指标计算结果

Fig. 13. Failure probability-based GSA results for the radome structure

作者信息 | Authors

赵浩东 Hao-Dong Zhao

西北工业大学 (Northwestern Polytechnical University) 工程力学系

周长聪 Chang-Cong Zhou通讯作者 (Corresp.)
西北工业大学 (Northwestern Polytechnical University) 工程力学系

Email: changcongzhou@nwpu.edu.cn



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

Probab Eng Mech
国际学术期刊 Probabilistic Engineering Mechanics 创立于 1985 年,SCI 收录,JCR Q1,现任主编是美国工程院院士、中国科学院外籍院士、莱斯大学 Pol D. Spanos 教授。
 最新文章