论文速递 | 复杂结点低保真模型更新中确定性估计结构参数的模态不确定性量化

文摘   2024-10-05 19:00   上海  
Modal-based uncertainty quantification for deterministically estimated structural parameters in low-fidelity model updating of complex connections

复杂结点低保真模型更新中确定性估计结构参数的模态不确定性量化

引用格式 | Cited by
Mehrkash M, Santini-Bell E, 2024. Modal-based uncertainty quantification for deterministically estimated structural parameters in low-fidelity model updating of complex connections. Probabilistic Engineering Mechanics, 77: 103671.
DOI: 10.1016/j.probengmech.2024.103671
摘要 | Abstract
结构中的复杂结点建模需要大量时间成本,因此必须进行简化。低保真建模的认知不确定性可通过随机模型更新进行量化。然而,采用物理代理模型简化连接构造面临挑战。此外,需建立包含连接结构参数的 Bayes 公式。该研究采用了经验证的参数化简化方法,对基准试验钢网中的复杂半刚性结点进行代理建模。提出了一类模态随机 Bayes 方法,以量化结构结点的不确定性。采用三类基于模态的目标函数进行有限元模型更新。通过冲击测试进行试验模态分析提取结构的模态特性,采用这些特性进行模型更新过程。将确定性和随机结构参数估计结合,以增强 Bayes 技术的鲁棒性。此外,还提供了选取最佳超参数的指导。结果表明,利用确定性估计参数作为先验知识可以促进并改善复杂结点结构的模态概率模型更新。此外,尽管对连接进行了很大简化,但代理模型最大后验估计的结构参数容许度仍然较低。
关键词不确定性量化, Bayes 模型更新, 结构参数估计, 复杂结点, 低保真建模, 模态分析
Modeling complex joints in structures entails significant time and effort, necessitating simplifications. Epistemic uncertainties arising from low-fidelity modeling can be quantified through probabilistic model updating. However, finding a surrogate physical model to represent simplified joint configurations poses challenges. Additionally, establishing a Bayesian formulation capable of incorporating structural parameters of connections is necessary. This study employs a validated simplifying parameterization approach for surrogate modeling of complex semi-rigid connections in a benchmark laboratory steel grid. It proposes a modal probabilistic Bayesian methodology to quantify uncertainties in the structure's joints. Three modal-based objective functions are utilized for finite element model updating. The modal properties of the structure are extracted by experimental modal analysis during an impact test, which will be utilized in the model updating process. Deterministic and probabilistic structural parameter estimations are integrated to enhance the robustness of the Bayesian technique. Furthermore, a guideline for selecting optimal hyperparameters is provided. Results demonstrate that utilizing deterministically estimated parameters as prior knowledge can facilitate and improve modal probabilistic model updating for structures with complex joints. Also, it is found that despite significant simplifications of joints, structural parameter tolerance around the maximum a posteriori estimate in surrogate models remains low.
KeywordsUncertainty quantification; Bayesian model updating; Structural parameter estimation; Complex connection; Low-fidelity modeling; Modal analysis.

图 1: 美国中佛罗里达大学钢网试验装置

Fig. 1. Experimental setup of the UCF grid

图 2: 建立的 SAP2000 结构低保真模型

Fig. 2. Low-fidelity model of the structure developed in the SAP2000

图 3: 美国中佛罗里达大学钢网的一个结点

Fig. 3. One of the UCF grid connections

图 4: 美国中佛罗里达大学钢网结点的简化模型

Fig. 4. Simplified model of the UCF grid connections

图 5: 工况 I: 基于频率、刚度与柔度误差函数估计的刚度后验概率密度函数

Fig. 5. Case I: Posterior PDF of the stiffness estimated by the frequency- (top), Stiffness- (middle), and flexibility-based (bottom) error functions

图 6: 工况 II: 基于刚度与柔度误差函数估计的刚度后验概率密度函数

Fig. 6. Case II: Posterior PDF of the mass estimated by the frequency- (top), Stiffness- (middle), and flexibility-based (bottom) error functions

图 7: 工况 III: 基于刚度与柔度误差函数估计的刚度后验概率密度函数

Fig. 7. Case III: posterior PDF of the mass estimated by the frequency- (top), Stiffness- (middle), and flexibility-based (bottom) error functions

作者信息 | Authors

Milad Mehrkash

美国新罕布什尔大学 (University of New Hampshire土木与环境工程

Erin Santini-Bell, 通讯作者 (Corresp.)
美国新罕布什尔大学 (University of New Hampshire土木与环境工程系

Email: erin.bell@unh.edu



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

Probab Eng Mech
国际学术期刊 Probabilistic Engineering Mechanics 创立于 1985 年,SCI 收录,JCR Q1,现任主编是美国工程院院士、中国科学院外籍院士、莱斯大学 Pol D. Spanos 教授。
 最新文章