论文速递 | ​​​基于模态数据的八层正交胶合木建筑 Bayes 模型更新

文摘   2024-09-20 19:04   德国  
开源获取 | Open Access
Bayesian model updating of eight-storey CLT building using modal data

基于模态数据的八层正交胶合木建筑 Bayes 模型更新

引用格式 | Cited by
Kurent B, Friedman N, Aloisio A, Pasca D, Tomasi R, Brank B, 2024. Bayesian model updating of eight-storey CLT building using modal data. Probabilistic Engineering Mechanics, 77: 103642.
DOI: 10.1016/j.probengmech.2024.103642
摘要 | Abstract
由于风致振动,高层木结构建筑的适用性通常是设计的关键因素。然而,准确模拟其适用性是一项挑战,部分原因在于某些非结构性建筑构件 (如石膏板、外立面、地板找平层) 具有结构作用,且目前尚无将其纳入有效模型的指导方案。模型更新可能有助于揭示这些构件的实际特性。本文介绍了一种基于代理模型的 Bayes 模型更新方法,应用于一座轻型八层正交胶合木建筑。研究特别关注质量分布与模态特性的模式和相关性,以及连接件、非结构性建筑构件和基础的影响。模型更新利用了常用于土木工程结构识别或健康监测的环境振动测试结果,但通常只能识别出相对较少的模态。因此,研究探讨了分析过程中所涉及模态数量对模型更新过程的敏感性。
关键词正交胶合木建筑, 模态测试, 模型更新, Bayes 推断, 代理模型, 参数化研究
The serviceability of tall timber buildings due to wind-induced vibrations is often a governing design criterion. However, accurate modelling of such buildings for their serviceability is a challenge, partly because certain non-structural building elements (e.g. plasterboards, façade, screed) act structurally, and no guidelines exist on how to effectively include them in the model. Model updating may be helpful in revealing their as-built characteristics. This paper presents findings of a surrogate-based Bayesian model updating of a lightweight eight-storey cross-laminated-timber building. In particular, the focus was on patterns and correlations between mass distribution and modal characteristics, as well as the effects of joints, non-structural building elements, and the foundation. Model updating utilised the results of ambient vibration testing, which is commonly used in civil engineering for structural identification or health monitoring, however, it generally offers a relatively low number of identified modes. To this end, the study investigates the sensitivity of the updating process to the number of modes involved in the analysis.
KeywordsCLT building; Modal testing; Model updating; Bayesian inference; Surrogate model; Parametric study.

图 1: 建筑的一般信息: (a) 尺寸; (b) 典型布局; (c) 典型截面; (d) 2022 年 8 月照片

Fig. 1. General information about the building: (a) Dimensions; (b) A typical layout; (c) A typical cross-section; (d) A photo from August 2022

图 2: 八层正交胶合木建筑的环境振动测试: (a) 屋面传感器的位置布局; (b) 典型传感器位置的照片; (c) 前 90 min 时段稳定图,(d) 典型 9 min 时段稳定图,(e) 从 80 个 9 min 时段识别出的固有频率直方图; (f) 从前 90 min 时段识别出的振型

Fig. 2. AVT of an eight-storey CLT building: (a) Layout of the sensor locations on the roof; (b) A photo of typical sensor location; (c) Stabilisation diagram of the first 90 min interval; (d) Stabilisation diagram of a typical 9 min interval; (e) Histograms of the natural frequencies identified from the 80 windowed 9 min intervals (blue lines show estimation with normal distribution using mean and COV from Tab. 1); (f) Mode shapes identified from the first 90 min interval

图 3: 对建筑物总质量贡献的占比

Fig. 3. Breakdown of the contributions to the total mass of the building

图 4: 初始有限元模型的振型

Fig. 4. Modes of vibration of the initial FE model

图 5: 试验与有限元模态的相关性表示: (a) 模态置信标准矩阵; (b) 频率尺度模态置信标准图

Fig. 5. Correlation of the experimental and FE modes presented: (a) MAC matrix; (b) FMAC plot

图 6: 不同质量分布假设对固有频率的影响

Fig. 6. Effect of different mass distribution assumptions on the natural frequencies

图 7: 不同几何建模假设对固有频率的影响

Fig. 7. Effect of different geometry modelling assumptions on the natural frequencies

图 8: 代理模型的交叉验证

Fig. 8. Cross-validation of the surrogate model

图 9: 输入参数的 Sobol 指标: 墙体垂直刚度系数、墙体平面剪切刚度系数、外墙平面剪切刚度系数、地基弹簧刚度与建筑物总质量系数

Fig. 9. Sobol’ indices of the input parameters: coefficient of vertical stiffness of the walls (P_1), coefficient of the in-plane shear stiffness of the walls (P_2), coefficient of the in-plane shear stiffness of the external walls (P_3), the stiffness of the springs modelling the foundation (P_4), and coefficient of the total mass of the building (P_5)

图 10: Markov 链蒙特卡罗抽样的后验分布散点对非对角线

Fig. 10. Pairwise scatter plots of posterior distribution sampled with MCMC are shown in off-diagonal plots

图 11: 面内剪切模量的后验分布: (a) 内墙; (b) 外墙; (c) 二维参数平面投影样本散点图

Fig. 11. Posterior distribution of the in-plane shear modulus: (a) Internal walls G_{wall,in}; (b) External walls G_{wall,ex}; (c) A scatter plot of samples projected in the 2D parameter plane (G_{wall,in} and G_{wall,ex})

图 12: Bayes 更新包含不同模式集时后验参数分布的核密度估计

Fig. 12. KDEs of posterior parameter distributions when different sets of modes are included in the Bayesian updating

图 13: 包含 3, 4 个模态迭代下墙体垂直刚度系数—地基弹簧刚度参数平面中的后验样本散点图

Fig. 13. A scatter plot of posterior samples in P_1–P_4 parameter plane for iterations with 3 and 4 modes included

图 14: 先验、后验与测量频率

Fig. 14. Prior, posterior and measured frequencies

图 15: 对地基弹簧刚度参数进行逐一敏感性分析并将其他参数设为更新值

Fig. 15. One-at-a-time sensitivity analysis for parameter P_4 while other parameters are set to the updated values

作者信息 | Authors

Blaž Kurent通讯作者 (Corresp.)
斯洛文尼亚卢布尔雅那大学 (University of Ljubljana) 土木与测绘工程学院

Email: bkurent@fgg.uni-lj.si

Noemi Friedman

匈牙利计算机科学与控制研究所 (Institute for Computer Science & Control) 信息学实验室

Angelo Aloisio

意大利拉奎拉大学 (Università degli Studi dell’Aquila) 土木建筑与环境工程系

Dag Pasca

挪威木材技术研究所 (Norsk Treteknisk Institutt)

Roberto Tomasi

挪威生命科学大学 (Norwegian University of Life Sciences) 科学技术学院

Boštjan Brank

斯洛文尼亚卢布尔雅那大学 (University of Ljubljana土木与测绘工程学院



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

Probab Eng Mech
国际学术期刊 Probabilistic Engineering Mechanics 创立于 1985 年,SCI 收录,JCR Q1,现任主编是美国工程院院士、中国科学院外籍院士、莱斯大学 Pol D. Spanos 教授。
 最新文章