Numerical investigation of turbulence effect on flight trajectory of spherical windborne debris: A multi-layered approach湍流对球状风载碎片飞行轨迹影响的数值研究: 多层级方法
Li SP, Gurley K, Guo YL, Van de Lindt J, 2024. Numerical investigation of turbulence effect on flight trajectory of spherical windborne debris: A multi-layered approach. Probabilistic Engineering Mechanics, 77: 103661.DOI: 10.1016/j.probengmech.2024.103661
湍流风场的精确建模是对风载碎片损伤结构进行风险分析的关键部分。现有研究通常简化了风湍流的复杂性,尚未系统展示其对碎片飞行建模精度的潜在影响。本研究采用多层级方法对湍流风场中的球状碎片飞行轨迹进行数值模拟。通过逐步增加风场复杂性,系统研究了湍流的空间相关性和非 Gauss 特征对碎片飞行行为的影响。碎片飞行行为对湍流风特征的敏感性分析将为碎片飞行轨迹的风洞试验设计以及建筑立面碎片易损性建模提供指导。关键词: 风湍流, 空间相关性, 非 Gauss 湍流, 风载碎片, 飞行轨迹, 数值模拟Accurate modeling of the turbulent wind field is a crucial component of risk analysis for structures to windborne debris damage. Existing studies typically simplify the complexities of wind turbulence, and the potential influence on the accuracy of debris flight modeling has not been systematically demonstrated. This study takes a multi-layered approach to numerically simulate the flight trajectory of spherical debris in a turbulent wind field. Complexities are incrementally added to the simulated wind field to systematically investigate the influence of spatial correlation and non-Gaussian features of turbulence on debris flight behavior. The sensitivity of debris flight behavior to turbulent wind features will inform the design of debris flight tracking wind tunnel tests and building façade debris vulnerability modeling efforts.
Keywords: Wind turbulence; Spatial correlation; Non-Gaussian turbulence; Windborne debris; Flight trajectory; Numerical simulation.Fig. 1. Schematic of the simulation methodology
Fig. 2. Schematic of simulating compact-type debris flight trajectory
Fig. 3. Wind fluctuation with no spatial correlation
图 4: 无空间相关性: 标准 Gauss 白噪声模拟Fig. 4. No spatial correlation: Simulated standard Gaussian white noise u_w(t)
Fig. 5. Wind fluctuation with full spatial correlation
Fig. 6. Full spatial correlation: simulated unit-variance wind fluctuations u_s(t)
Fig. 7. Wind fluctuation with partial correlation in vertical direction and full correlation in along-wind direction
Fig. 8. Simulated correlated wind fluctuations at two elevations
图 9: 垂向部分相关且顺风向基于冻结湍流传播的脉动风Fig. 9. Wind fluctuation with partial correlation in vertical direction and frozen turbulence-based propagation in along-wind direction
Fig. 10. Simulated non-Gaussian wind fluctuations
Fig. 11. Influence of turbulence spatial correlation on debris flight
Fig. 12. Influence of vertical correlation on debris flight
Fig. 13. Dissection of vertical correlation's influence on debris flight
Fig. 14. Influence of horizontal correlation on debris flight
Fig. 15. Influence of turbulence high-order statistics on debris flight
Fig. 16. Summary of simulation results
作者信息 | Authors
李少鹏 Shao-Peng Li, 通讯作者 (Corresp.)美国佛罗里达大学 (University of Florida) 土木与海岸工程系Email: shaopengli@ufl.edu
美国佛罗里达大学 (University of Florida) 土木与海岸工程系
美国科罗拉多州立大学 (Colorado State University) 土木与环境工程系
美国科罗拉多州立大学 (Colorado State University) 土木与环境工程系
律梦泽 M.Z. Lyu | 编辑 (Ed)
P.D. Spanos | 审校 (Rev)
陈建兵 J.B. Chen | 审校 (Rev)
彭勇波 Y.B. Peng | 审校 (Rev)