这应该是近期第三篇B细胞图谱了吧,这次是Cancer cell,3篇全看,弄懂泛癌分析策略

文摘   2024-10-15 13:01   北京  

不设置🌟有时会收不到公众号内容,code一段时间后会失效,代码见文末

今年真是超多泛癌 B细胞图谱的大文章,想做好 B细胞注释,看看这 3 篇就够了,分别来自国内外不同的课题组,都有相互可以借鉴的地方。

这个是昨天发的 Cancer Cell

这篇是张泽民院士发的 Cell,之前已经介绍过了

北大张泽民院士那篇泛癌B细胞Cell文章生信分析详讲——怎么整合上千个单细胞样本

这篇是高强教授发的 Science

这次介绍昨天的那篇 Cancer Cell

肿瘤内B细胞的全癌种单细胞RNA测序图谱揭示新发现

在癌症研究领域,肿瘤微环境中的B细胞一直是被忽视的一环。然而,最新发布在Cancer Cell的研究展示了一项划时代的成果——一个跨癌种的肿瘤内B细胞单细胞RNA测序(scRNA-seq)图谱。这项研究由英国伦敦大学学院(UCL)癌症研究团队主导,深入剖析了不同肿瘤类型中的B细胞和浆细胞亚群,揭示了它们与免疫治疗响应之间的关联,为癌症免疫治疗和基础研究提供了新的视角。

研究亮点:10个B细胞与浆细胞亚群的分类与差异

研究团队在分析了来自15项研究的126,101个肿瘤浸润B细胞后,构建了这一全新的图谱。这些细胞来自七种主要癌症类型,包括乳腺癌、肺癌、黑色素瘤等。研究共识别出10个独特的B细胞与浆细胞亚群,涵盖了从初始的未成熟B细胞到功能成熟的浆细胞的全过程。

关键发现:B细胞亚群与免疫检查点抑制剂(CPI)治疗的关联

研究发现,不同B细胞亚群与CPI治疗响应之间存在显著的差异。例如,研究表明,未成熟B细胞比例较高的患者往往对CPI治疗有更好的响应。而静息记忆B细胞和高表达MT1X的浆细胞亚群与较差的治疗效果相关。这些结果表明,B细胞的活化状态可能是预测CPI疗效的重要指标。

此外,研究还发现了B细胞与T细胞之间的紧密互作。通过配体-受体分析,团队发现了一系列独特的分子互作,这些互作可能在调节肿瘤免疫反应中发挥关键作用。例如,BAFF-CD40信号通路被认为在B细胞成熟和抗原呈递过程中至关重要。

空间验证与功能分析:揭示肿瘤内的免疫细胞分布

为了进一步验证发现的B细胞亚群与其功能,研究团队使用了CosMx空间多重成像技术进行分析(前几天刚介绍完这个,👀👇)。结果表明,B细胞和浆细胞在肿瘤内部和边界区域的分布存在显著差异。浆细胞更倾向于分布在肿瘤边界的基质区域,而B细胞则集中于淋巴结构中。这种空间分布的差异可能在肿瘤免疫微环境的调控中发挥重要作用。

最新Cell,一起来欣赏下单细胞分辨率的空间组学文章——重复RNA如何扰乱胰腺癌细胞的可塑性

代码都可以参考学习,比如看看他们的雷达图画法

#Pathway radar plot
library(data.table)library(fgsea)library(ggplot2)library(msigdbr)library(dplyr)library(tidyverse)library(fmsb)
m_df <- msigdbr(species = "Homo sapiens", category = "C2",subcategory = "CP:KEGG")fgsea_sets<- m_df %>% split(x = .$gene_symbol, f = .$gs_name)
markers <- read.csv("~/tumoursubset__0.2_RNA_rPCA.csv", header = TRUE, check.names = FALSE) %>% as.data.frame()

markers$cluster[markers$cluster=="0"]<-"Resting Memory B cells"markers$cluster[markers$cluster=="1"]<-"Activated Memory B cells"markers$cluster[markers$cluster=="2"]<-"Conventional Plasma cells"markers$cluster[markers$cluster=="3"]<-"Naive B cells"markers$cluster[markers$cluster=="4"]<-"Stressed Plasma cells"markers$cluster[markers$cluster=="5"]<-"Atypical Memory B cells"markers$cluster[markers$cluster=="6"]<-"IGKC-high Plasma/Plasmablasts"markers$cluster[markers$cluster=="7"]<-"Transitional/Proliferative 1"markers$cluster[markers$cluster=="8"]<-"Transitional/Proliferative 2"markers$cluster[markers$cluster=="9"]<-"MT1X-high Plasma/Plasmablasts"
colnames(markers) [1] <- "gene1"
fgseaRes<-data.frame()for(i in c("Naive B cells", "Activated Memory B cells", "Resting Memory B cells", "IGKC-high Plasma/Plasmablasts", "Conventional Plasma cells", "Stressed Plasma cells", "Atypical Memory B cells", "Transitional/Proliferative 1", "Transitional/Proliferative 2", "MT1X-high Plasma/Plasmablasts")){ cluster.genes<- markers %>% dplyr::filter(cluster == i) %>%arrange(desc(avg_log2FC)) %>% dplyr::select(gene,avg_log2FC) ranks<- deframe(cluster.genes) fgseaRes1<- fgsea(fgsea_sets, stats = ranks, nperm = 1000) fgseaRes1$cluster<-i fgseaRes<-bind_rows(fgseaRes, fgseaRes1)}


top5<- fgseaRes %>% filter(pval < 0.05)%>% group_by(cluster) %>% slice_max(n = 5, order_by = NES)


pathway<-as.data.frame(unique(top5$pathway))
colnames(pathway)<-"pathway"
for(i in c("Naive B cells", "Activated Memory B cells", "Resting Memory B cells", "IGKC-high Plasma/Plasmablasts", "Conventional Plasma cells", "Stressed Plasma cells", "Atypical Memory B cells", "Transitional/Proliferative 1", "Transitional/Proliferative 2", "MT1X-high Plasma/Plasmablasts")){ cluster.pathway<- fgseaRes %>% dplyr::filter(cluster == i)%>%dplyr::select(pathway,NES) pathway<-left_join(pathway, cluster.pathway,by ="pathway")}

colnames(pathway)[-1]<-c("Naive B cells", "Activated Memory B cells", "Resting Memory B cells", "IGKC-high Plasma/Plasmablasts", "Conventional Plasma cells", "Stressed Plasma cells", "Atypical Memory B cells", "Transitional/Proliferative 1", "Transitional/Proliferative 2", "MT1X-high Plasma/Plasmablasts")

rownames(pathway)<-pathway$pathway
pathway[is.na(pathway)] <- 0
pathway <- data.frame(t(pathway[-1]))
#Add rows with highest and lowest valuespathway <- rbind(rep(2.2374599,25) , rep(-2.9921065,25) , pathway)
#Rename pathwayspathway <- pathway %>% rename( TCR_Signalling = KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY, NK_mediated_cytotoxicity = KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY, VEGF_Signalling= KEGG_VEGF_SIGNALING_PATHWAY, IgA_production= KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION, GVHD = KEGG_GRAFT_VERSUS_HOST_DISEASE, Cell_adhesion= KEGG_CELL_ADHESION_MOLECULES_CAMS, T1D = KEGG_TYPE_I_DIABETES_MELLITUS, Asthma = KEGG_ASTHMA, Protein_export = KEGG_PROTEIN_EXPORT, Vibrio_Cholerae_Infection = KEGG_VIBRIO_CHOLERAE_INFECTION, Antigen_presentation = KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION, N_Glycan_Biosynthesis = KEGG_N_GLYCAN_BIOSYNTHESIS, Cardiac_muscle_contraction = KEGG_CARDIAC_MUSCLE_CONTRACTION, Insulin_signalling =KEGG_INSULIN_SIGNALING_PATHWAY, MTOR_signalling =KEGG_MTOR_SIGNALING_PATHWAY, Ribosome = KEGG_RIBOSOME, MAPK_signalling = KEGG_MAPK_SIGNALING_PATHWAY, Endocytosis = KEGG_ENDOCYTOSIS, Prion_Diseases = KEGG_PRION_DISEASES, Spliceosome = KEGG_SPLICEOSOME, Lupus =KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS, Oxidative_Phosphorylation = KEGG_OXIDATIVE_PHOSPHORYLATION, Parkinsons = KEGG_PARKINSONS_DISEASE, Viral_Mycarditis = KEGG_VIRAL_MYOCARDITIS, Leishmania = KEGG_LEISHMANIA_INFECTION, Allograft_rejection =KEGG_ALLOGRAFT_REJECTION, Autoimmune_thyroid = KEGG_AUTOIMMUNE_THYROID_DISEASE )
# Select relevant columnspathway <- pathway[,c(1,2,3,4,7,10,12,13,17,18,19,22)]
#Plot Radar Plotradarchart(pathway, plwd = 5, pcol = colors_border) + legend(x=1.5, y=1, legend = rownames(pathway[-c(1,2),]), bty = "n", pch=20, text.col = "black", col=colors_border, cex=1, pt.cex=3)
colors_border= c("#9E9E9E","#D64550", "#FF977E","#A43B76", "#9A64A0","#750985", "#5ECBC8", "#28788D", "#37A794", "#4C5D8A", "#039BE5", "#BF360C")

老规矩,本周五晚上 8 点截止,到时候挑 3 位点👍数量最多的同学为幸运读者,免💰给

也为了清华大学出版社的宣传效果,希望大家多点👍和在👀,谢谢大家。


后苔↩️之前贴子的岸号即可霍得之前的代码,今日关键词:241015


想了解生信的,跟班的,可以看下面👇这个文章

单细胞、空转、生信基础手把手教学系列

这次主要强调的是空间组学的学习——空间组学都是学哪些内容?

关键词:单细胞测序,生信分析,生物信息学,公共数据挖掘,空间组学

今日的参考文献

Yang Y, Chen X, Pan J, Ning H, Zhang Y, Bo Y, Ren X, Li J, Qin S, Wang D, Chen MM, Zhang Z. Pan-cancer single-cell dissection reveals phenotypically distinct B cell subtypes. Cell. 2024 Aug 22;187(17):4790-4811.e22.

Ma J, Wu Y, Ma L, Yang X, Zhang T, Song G, Li T, Gao K, Shen X, Lin J, Chen Y, Liu X, Fu Y, Gu X, Chen Z, Jiang S, Rao D, Pan J, Zhang S, Zhou J, Huang C, Shi S, Fan J, Guo G, Zhang X, Gao Q. A blueprint for tumor-infiltrating B cells across human cancers. Science. 2024 May 3;384(6695):eadj4857.

Evelyn Fitzsimons, Danwen Qian, Andrei Enica, Krupa Thakkar, Marcellus Augustine, Samuel Gamble, James L. Reading, Kevin Litchfield, A pan-cancer single-cell RNA-seq atlas of intratumoral B cells, Cancer Cell, Volume 42, Issue 10

生信钱同学
北京大学在读博士生,记录自己的学习日常🌞分享生信知识:如单细胞和空间测序、多组学分析、宏基因组、病理组学、影像组学等生物信息学、机器学习和深度学习内容🌬
 最新文章