高压均质、高剪切乳化、微射流均质三种均质方式比较分析

美食   2024-11-10 11:30   山东  

商务合作、加食品研发群、找食品配方、食品加工技术,请扫码或加微信18106384610(备注“公司+职位”)。


本文对高压均质、高剪切乳化、微射流均质三种均质方式进行了比较,以山药制品为例,为提升均匀的乳化状态,延长产品保藏期,为良好分散找到适合的解决途径。



01

乳化与均质的由来


工业上,两种互不相溶的液体或固液夹杂时,通常利用乳化机来完成油水乳化,达到分散均质的作用。当油水两相介质夹杂形成油包水或水包油后,不能稳定存在,需要合适的乳化剂来改善体系的表面张力,同时需要利用强烈的切割分散,将介质打散为细小颗粒,最终形成稳定均匀的分散体系,达到良好的乳化效果。


目前,乳化机的应用不仅限于乳化。乳化机具有强烈的剪切效果,可以使粉粒体在摧毁撞击下破碎,最终细化到细小粒径,然后使固体颗粒充分掺混到液体中并构成相对不变的悬浮液。当物料的细度达到微米甚至纳米级时,体系可以被认为均质。


高压均质可以使物料细化成微小颗粒,将乳化与均质联系起来,得到稳定的乳状液,因此,乳化机又可以称为均质乳化机。



02

均质机的原理


均质机的作用力主要为剪切力和压力。在均质过程中,产生层流效应,分散相颗粒或液滴被剪切和延伸拉碎;受到湍流效应影响,颗粒或液滴在压力波动下产生随机变形;受到空穴效应的影响,较高的压力作用使小气泡迅速破裂,释放能量,从而引起局部液压冲击,造成振动。在这些共同作用下,物料呈良好的均匀分布状态。


一、高压均质机的原理


柱塞泵通过不断的往复运动,将物料吸入阀组中(图1),柱塞可调节压力的大小。物料在高压下流过缝隙时,液滴首先被延伸,后因通过阀体时的湍流作用,使延伸部分剪切拉碎。从阀缝中高速冲出的液流撞上挡圈,产生高速的撞击作用。同时,压力迅速大幅下降,产生很大的爆破力,瞬时引起空穴现象,强烈释放的能量和强烈的高频振动,使颗粒或液滴破碎,从而达到液体样品均质、粉碎和乳化的效果。液滴在料液进口处携带极高的静压能,在均质过程中,静压能转化成了动能,使液滴破裂。

 

图1


二、高剪切乳化机的原理


剪切头由转子和定子组成,转子与定子相互啮合,每级定转子又有数层齿圈。转子高速旋转产生强大的离心力,形成强负压区,物料被吸入工作腔,在定、转子间隙内受到剪切、离心挤压、撞击撕裂和湍流等综合作用,而产生分裂液滴的张力。液体离开定子小孔后压力又回升,由此产生了空穴效应。均质头高速旋转,对物料进行剪切、分散、撞击。这样物料就会变得更加细腻,完成均质。


三、微射流均质机的原理


微射流高压均质机主要是由分散单元和增压机构组成。在增压机构的作用下,利用液压泵产生的高压,流体经过孔径很微小的阀心,产生几倍音速的流体,并在分散单元的狭小缝隙间快速通过,进行强烈的高速撞击。在撞击过程中,流体瞬间转化其大部分能量,流体内压力的急剧下降而形成超声速流体,流体内的粒子碰撞、空化和湍流,剪切力作用于纳米大小的细微分子,使流体的成分以完全均质的状态存在(图2)。


图2



03

均质机的比较


高压均质机主要通过压力系统的高压对物料挤压、延伸、撞击、破碎,主要依靠空穴效应和湍流效应。均质机的均质阀设计间隙大,均质压力较低,在对高硬度颗粒均质时容易损坏,维修难度大。优点是价格相对较低。高压均质机对处理软性、半软性的颗粒状物料比较合适。


高剪切乳化机主要是靠定转子之间的相对高速运动产生的高剪切作用,使物料剪切、撕裂和混合,同时,较强的空穴作用对物料颗粒进行分散、细化、均质。其优点是处理量大,生产的产品稳定性好,不容易破坏乳分层,机器比较耐用,而且容易维修,均质形式更加丰富,缺点是体积比较大。


微射流均质机利用百微米左右孔道形成超音速射流,射流间相互对撞,进行极强烈的剪切,得到更高的均质压力,产生更好的粒径分布效果。但是,其设计压力高,流量较小,造价相对偏高。具体比较见表1。




04

应用分析


高压均质机由于压力限制,对处理软性、半软性的颗粒状物料比较合适,不适宜高粘度的物料。鞠健等采用优化后的超高压辅助提取法可明显提高山药皮总酚提取率,且提取时间短、工艺条件稳定。贺永朝等采用高压均质处理怀山药,发现可以降低淀粉内部的有序度,降低抗酶解能力,提高淀粉消化性,且压力越高,该趋势越明显。高压均质机使各类乳品饮料中的脂肪球显著细化,用于冰淇淋等制品的生产中,能提高料液的细洁度和疏松度,防止或减少料液分层,口感更醇。


高剪切乳化机比较适合处理含纤维较多或者较硬的颗粒物料,混料、杀菌、均质可同时完成。刘俊梅等采用高剪切乳化技术处理大豆蛋白,使蛋白颗粒大大减小,疏水基团暴露,有利于形成凝胶网络,可以显著提高大豆分离蛋白凝胶持水性。郭维静等通过高速剪切乳化技术处理玉米蛋白粉来改变蛋白粉的物理特性,可以显著降低颗粒大小,提高流变性和溶解度,提高淀粉降解率和蛋白质水解度,有效抑制了果蔬汁的分层现象。高剪切乳化机广泛应用于粘度较大、乳化要求较高的产品,如果酱、果茶等。


微射流均质机使介质的颗粒极度细化(液—液均质平均粒度在1以下),均质后的产品还能得到不沉淀、高胶状、高稳定性等优点,从而使成品的外观也大大改善,适用于纳米新材料、制药、生物技术、化妆品、高端饮品等行业。郭晓君等采用超高压微射流技术对山药汁进行处理,发现可显著改善山药汁的物理稳定性,物料中可溶性固形物含量无显著变化;亮度值显著增大,山药汁中颗粒平均粒径显著减小,浊度和非酶褐变度逐渐降低。


刘梦培等研究发现,超高压微射流处理能较好地保持山药汁中的营养成分,在80MPa压力下,氨基酸增加,还原糖、总酸和黄酮呈较小幅度降低。王小媛等研究表明,高压微射流对铁棍山药汁中微生物有较好的杀菌效果。微射流均质机可形成纳米乳剂,除了灭菌之外还可破碎提取细胞中的有用营养成分,可以将纤维素的某一维度尺寸缩小至100nm以内,形成纳米纤化纤维素。


人体吸收是由于酶的作用,进入人体的物质其颗粒度越小则与酶接触起反应的表面积越大,吸收的效率就越高。能够高效率地破碎细胞壁,从而提取其内含物,对提高人体的吸收率有很大的意义。因此,选择合适的均质设备成为生产过程中的关键。


各设备均有利弊,单独使用高压均质机,由于压力较小,达不到分散研磨的良好效果,单独使用微射流均质机,其流量较小,高剪切乳化机的搅拌作用强烈。因此,可以采取二者或三者协同作用来处理物料,或能达到较好的均质效果。


食品开发中,该如何正确地选择乳化剂?

我们知道食品乳化剂的作用主要分三方面:①降低油--水界面张力,促进乳化作用,在油--水--乳化剂界面上形成相平衡,稳定乳化剂;②与淀粉和蛋白质等成分相互作用,改善食品的结构及流变性;③改进脂肪油的结晶。


但乳化剂的种类十分繁多,实际应用时,常会听到“这是离子型乳化剂“、”“这是非离子型乳化剂”、“所需乳化剂的HJB值范围”…这此专用术语常常让非专业人士摸不着头脑。其实,离子型乳化剂也好,非离子型乳化剂也好,它们都是根据乳化剂的亲水基团在水中是否解离来分别的。


进一步细分,离子型乳化剂按其在水中生成的离子的种类可分为三类,即阴离子、阳离子和两性乳化剂。阴离子乳化剂起界面活性作用的是它在水溶液中电离形成的带负电荷的活性离子(即阴离子)。相应的阳离子乳化剂起界面活性作用的是它在水溶液中电离形成的带正电荷的活性离子(即阳离子)。


两性乳化剂可分为两类,即两性电解质类和甜菜碱类。两性电解质类其分子在溶液(按介质)既可作为质子给予体,也可作为质子接受体起作用,既它们可以作为酸,也可以作为碱进行反应。相反,甜菜碱类不解离,在溶液中以“内盐”形式存在。这些化合物也称为两性离子,但与真正的两性电解质不同,它们在酸性和等电点以下的情况时表现出两性电解质的典型反应。


在食品中应用的离子型乳化剂主要有:硬脂酰乳酸钠、磷脂以及离子性高分子化合物,如黄原胶、羧甲基纤维素等。


非离子乳化剂是指在水溶液中不形成离子的表面活性剂,起界面活性作用的是整个分子。大多数食品乳化剂均属此类,如甘油酯类、山梨醇脂类、木糖醇酯类、蔗糖酯类及丙二醇酯类等。


按离子的类型对乳化剂进行分类是最常用的和最方便的方法,各种离子型乳化剂均具有各自的特性,因此只需弄清乳化剂的离子类型,就可以推测应用范围。


这一期内容主要是与大家谈谈关于乳化剂的HLB值的话题。我们知道乳化剂不仅种类繁多,而且功能各异,有些功能甚至是相对的。那么在实际应用中,该如何掌握尺度,如何正确地选择乳化剂是十分关健的问题。


尽管乳化剂均具有亲水、亲油两种特性,但显然对每一种具体的乳化剂而言,它的亲水亲油性程度是有差异的,正因如此,乳化剂才表现出不同功用。例如,有的亲水性强而易溶于水,有的亲油性强呈现易于油特性;有的起肋泡作用,而的的起消泡作用。

那么一种乳化剂的具体情况是亲水性强,还是亲油性强,怎样来进行表示,有没有统一地标准?这是使用乳化剂企业关心的问题。而HLB值就是用来度量乳化剂分子亲水、亲油基团的大小和程度的,即亲水亲油平衡值,简称HBL值。


亲油性强的乳化剂的HLB值较小,通常小于10;亲水性强的乳化剂HLB值较大,一般超过10。食品乳化剂的HLB值从1.0到40不等。具体乳化剂的HLB值见文章底部附表1:常用乳化剂的HLB值汇总。


乳化剂的HLB值部分与溶解性有关,HLB值决定形成乳状的类型,是制备大多数乳状液的有用工具,借助于HLB值能够看出乳化剂的表现,减少乳化剂试验次数。例如,蔗糖脂肪酸酯亦称脂肪酸酯糖酯,是一种常用的乳化剂,可细分为单脂肪酸脂、双脂肪酯和三脂肪酸酯,其亲水亲油平衡值HLB在3—15。单酯含量越多,HBL值越高,即亲水性越强,可用作O/W型(油/水型)乳化剂,HBL值越低,亲油性越强,可用作W/O型(水/型)乳化剂,低HBL值的蔗糖酯用于人造奶油,可提高乳化稳定性。


那如何决定指定体系乳化所需乳化剂配方呢?


方法是:任意选择一对乳化剂,在一定范围内改变其混合比例,求得效率最高之HLB 值后,改变复配乳化剂的种类和比例,但仍需保持此所需HLB 值,直至寻得效率最高的复配乳化剂。


在制备稳定乳状液时,选择最适合的乳化剂以达到最佳乳化效果是关键问题。对于乳化剂的选择,目前尚没有完善的理论。


表面活性剂的HLB值在选择乳化剂和确定复合乳化剂配比用量方面有很大使用价值,其优点主要体现在它的加和性上,可以简单地进行计算;其问题是没有考虑其他因素对HLB值的影响,尤其是温度的影响,这在近年来用量很大的非离子型乳化剂上表现尤为突出。


此外,HLB值只能大致预示形成乳状液的类型,不能给出最佳乳化效果时乳化剂浓度,也不能预示所得乳状液的稳定性。因此,应用HLB值选择乳化剂是一个比较有效的方法,但也有一定的局限性,在实际应用中还需要结合其他方法参照进行。



来源:李存红 侯艳 符德学. 高压均质、高剪切乳化、微射流均质的比较及在食品方面的应用. 焦作大学学报. 2020年6月第 2 期.封面图来源:创客贴

提醒:文章仅供参考,如有不当,欢迎留言指正;读者不应该在缺乏具体的专业建议的情况下,擅自根据文章内容采取行动,因此导致的损失,本运营方不负责;如文章涉及侵权,请联系我删除或支付稿酬。



阅读原文”了解更多

请帮忙点下,给我个鼓励吧!

食品研发与生产
食品伙伴网旗下公众号,聚焦食品研发与生产领域,涵盖食品创新、食品配方分享、食品技术难题解决、食品研发技术培训与交流、食品添加剂应用,食品生产加工...公众号宗旨:让食品研发人得到更快的提升。
 最新文章