文献分享:原核大肠杆菌重组蛋白表达问题及解决策略

文摘   科学   2024-08-06 15:15   湖北  

背景

蛋白质表达是多种生物系统的关键过程。大肠杆菌(Escherichia coli)作为工业催化和医疗保健领域广泛应用的微生物宿主,在构建重组表达系统时常常面临重大挑战。为了最大限度地发挥大肠杆菌表达系统的潜力,解决某些目的蛋白产量低或缺乏的问题至关重要。

2024年7月20日,清华大学工业生物催化重点实验室研究人员在Biotechnology advances上发表了一篇名为“Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli”的文章,针对大肠杆菌中外源蛋白表达面临的主要挑战,包括蛋白毒性、基因序列的内在影响和mRNA结构等,提出了可行的解决方案。这些策略包括用于管理毒性蛋白表达的专门方法,解决与mRNA结构和密码子偏倚相关的问题,考虑多种因素的高级密码子优化方法,以及由大数据和机器学习推动的新兴优化技术。

01

大肠杆菌异源表达重组蛋白的优势以及现状

蛋白质表达是分子生物学和生物技术的基础工具,在各种疾病的研究、诊断和治疗以及工业生物生产中发挥着不可或缺的作用。大肠杆菌是重组表达蛋白应用最广泛的宿主之一,大肠杆菌具有快速生长、简单的培养条件和丰富的用于研究的分子工具等优点。重组蛋白在大肠杆菌中的表达主要涉及宿主选择、基因克隆、载体构建、表达条件优化和表达结果验证。

为了增强重组蛋白的表达,已经开发了多种质粒载体和大肠杆菌菌株,包括采用T7表达系统的pET系列质粒和大肠杆菌菌株BL21(DE3)。大肠杆菌表达外源蛋白目前会出现蛋白不表达,蛋白表达水平低,蛋白表达在包涵体中的情况,现有的优化蛋白表达方式主要集中在启动子替换、简单密码子优化、宿主选择和培养条件优化等策略上。

02

蛋白质毒性

蛋白质毒性是大肠杆菌表达重组蛋白的常见挑战,当这些蛋白质破坏宿主的正常生理过程时,它们可能会导致生长抑制甚至细胞死亡。常见的毒性蛋白质有可切割mRNA翻译起始位点的核糖核酸酶,DNA结合蛋白CENP-B,以及其他在诱导前生长阶段对宿主表现出毒性的物质;一些蛋白仅在过表达(诱导后)时表现出毒性,例如,膜蛋白。有多种细胞内合成策略可用于处理毒性蛋白。这些策略的主要重点是尽量减少细菌生长过程中毒性蛋白的基础表达,并在诱导后达到高表达水平,从而确保在宿主细胞死亡前获得足够的目标蛋白。目前也有许多用来表达有毒性蛋白的菌株,例如,BL21(DE3)pLysS和pLysE等广泛使用的菌株携带T7 RNAP抑制剂溶菌酶,这在诱导前降低了T7启动子的转录强度,从而降低了对宿主的毒性。

除了严格调控细胞内的蛋白质合成以减轻毒性外,另一种策略包括表达毒性蛋白并将其分泌到细胞外空间,以避免破坏细胞内生长。这种方法通常包括将信号肽融合到目标蛋白的N端,促进所需蛋白的分泌表达。在大肠杆菌中,常见的信号肽有OmpA,OmpF,PelB,LamB,PhoA。大肠杆菌的分泌途径有I型和II型,其中II型分泌途径被广泛应用于将靶蛋白分泌到质周。该通路包括Sec依赖通路、信号识别颗粒(SRP)通路和双精氨酸易位(TAT)通路,Sec依赖性途径适用于细胞质内未折叠的蛋白质。SRP途径可以分泌已经在细胞质内折叠的蛋白质。TAT途径更适用于需要在细胞内完全折叠或含有二硫键的复杂蛋白的分泌。目前有多种蛋白质已经在大肠杆菌中通过适当的分泌途径成功分泌。例如,使用OmpF信号肽通过秒依赖途径分泌人类白细胞介素-10;使用信号肽增强子B1(MERACVAV)优化PelB和MalE信号肽通过秒依赖途径分泌来自Ideonella sakaiensis的PET水解酶(IsPETase),使用Dsb信号肽通过SRP途径分泌单链Fv(scFv)等。

03

基因序列决定蛋白质的表达

在微生物蛋白质合成过程中,多种因素可导致蛋白质合成不当,包括基因复制、转录和翻译等,导致重组蛋白不表达的主要因素可能源于基因序列的差异,从而导致mRNA的改变。

密码子偏置导致的翻译障碍

密码子偏性被认为是影响蛋白质表达的最关键因素之一,在翻译过程中,不同密码子对应的带电tRNA浓度不同,以及不同密码子的解码速度差异。极低的解码率和带电tRNA的缺失可能导致翻译中断,从而引起蛋白质表达问题。影响密码子的解码率可能的因素包括tRNA的修饰和激活过程、tRNA的扩散动力学以及密码子和反密码子之间的亲和力。核糖体可能在特定位置减慢或暂停,例如连续的脯氨酸残基、带正电荷的氨基酸和类SD序列。

mRNA的结构

在研究异源基因序列对大肠杆菌蛋白表达的影响时,mRNA的影响是一个至关重要的方面,在与核糖体结合之前直接观察mRNA的二级结构仍然是一个巨大的挑战,几种mRNA结构预测和映射方法已经被开发出来,例如,自由能最小化,次优结构预测,碱基配对概率预测,RNA结构平行分析(PARS)图谱,化学修饰探测。冷冻电子显微镜(Cryo-EM)有望同时探索RNA的3D结构及其构象动力学,利用人工智能预测mRNA二级和三级结构。利用上述这些mRNA结构测定方法分析发现mRNA的二级结构对表达水平的影响最为显著,降低mRNA结构复杂性显著改善了突变体的表达水平,CDS 5'端结构的减少有利于翻译起始和基因表达。mRNA结构是基因表达中基本且广泛的调控因子,指导了基因在大肠杆菌中的表达。

多参数共同影响

重组蛋白的表达由密码子的使用和mRNA的结构联合调控,密码子使用的变化可以影响mRNA的结构。核糖体分析结果表明,在翻译起始阶段,该区域的核糖体密集富集,称为“斜坡序列”。“斜坡假说”表明,这些密码子的存在旨在减缓翻译延伸率,从而降低核糖体干扰mRNA的可能性,并防止核糖体脱落。“结构假说”提出,这些密码子旨在减少mRNA在起始位点的结构折叠。研究发现密码子使用对蛋白表达的影响比mRNA折叠因子的影响更为显著。

除了翻译起始过程中斜坡序列的复杂影响外,密码子使用和mRNA结构之间的相互作用还通过改变细胞资源(如核糖体和翻译必需物质)的比例来影响蛋白质表达和宿主生长。当mRNA的5'端结构最小,并且缺乏翻译减慢密码子时,游离核糖体可以快速结合和翻译,产生大量蛋白质,同时保护mRNA不被降解。如果存在减慢翻译的罕见密码子,则会导致核糖体停滞,减少蛋白质生成,增加核糖体占用率。当仅mRNA的5'端是高度结构化时,核糖体难以结合并启动翻译,导致蛋白表达量极低,同时不会显著消耗营养物质或核糖体。当5'端和下游区域都具有较高的结构时,核糖体发现启动翻译具有挑战性,而下游结构保护mRNA免受降解这种情况消耗了大量的“空闲”核糖体,但导致最低限度的蛋白质生产,这对蛋白质表达和宿主生长都有害。其他因素如GC含量和潜在的酶裂解位点也被认为是潜在的影响因素。

04

解决方案和综合优化方法

为了解决蛋白不表达的问题,传统的方式包括密码子优化和融合标签的使用,与此同时,高通量实验技术和人工智能领域也在蓬勃发展。

一.密码子优化

为了克服密码子使用和mRNA结构可能阻碍重组蛋白表达的挑战,在克隆到大肠杆菌宿主之前对基因序列进行优化是必要的。

常用的密码子优化策略

1. 使用最佳密码子(UBC):按照“一个氨基酸-一个密码子”的方法,用最常见的宿主密码子或具有高tAI或nTE值的密码子替换原始密码子。

2. 匹配密码子使用(MCU):根据特定密码子在宿主中的出现频率,调整目标基因中特定密码子的使用频率。

3. 协调相对密码子适应性(HRCA):使原宿主的基因密码子频率与宿主的密码子频率相协调。

密码子优化的工具

1. OPTIMIZER:采用了简单的“一个氨基酸-一个密码子”策略,而且还结合了基于蒙特卡罗算法的随机方法,在最小化序列改变的同时最大化优化,提高了蛋白的表达水平。

2. DNA Chisel:允许用户在这三种优化策略中进行选择,为研究人员提供了定制的基因序列优化方法。

除了上述方法外,还可以引入异源tRNAs,通过引入包含罕见密码子对应tRNA基因的质粒,可以解决在翻译过程中可能出现的tRNA耗尽问题。例如,Rosetta菌株系列携带pRARE质粒,含有解码罕见密码子的tRNA基因。

二.融合标签的应用

在大肠杆菌表达系统中,使用融合标签/短肽是增强蛋白表达和解决非表达蛋白问题的高效策略。融合标签,尤其是蛋白质N端序列上的融合标签,在调节翻译起始区附近的核苷酸序列和整合外源功能性标签方面起着至关重要的作用。这些融合标签在翻译过程中修饰ramp序列,使低表达水平的蛋白获得高表达,并辅助蛋白质折叠,常见的融合标签有MBP、SUMO、TrxA等。另一方面,一些较小的融合肽,通常由不超过15个氨基酸残基组成,也可以在提高表达水平和溶解性方面发挥显著作用。当环境pH等于蛋白质的等电点时,蛋白质的溶解度最差。因此,许多研究集中于引入由带电氨基酸组成的短肽,以改变目标蛋白的净电荷为正或负,从而提高其溶解度。根据目标蛋白的等电点选择合适的肽标签可以增强溶解度,防止聚集。

三.基于大规模数据和深度学习的综合优化方法

随着高通量培养技术和深度学习方法的进步,新的工具和算法出现了,可以基于大量高表达序列的数据进行直接密码子优化。这些工具利用大规模和深度学习技术,为蛋白质表达提供更准确的指导。目前用来预测和提高蛋白表达水平的综合优化方法有6AA/31C,MPEPE,SoluProt,ICOR,COSMO,BiLSTM-CRF,DeepTESR等方法。

05

总结与展望

该研究阐述了蛋白毒性和基因序列是蛋白表达失败或低表达的两个关键因素,可以通过控制不同生长阶段毒蛋白的表达、选择合适的宿主菌株和诱导系统以及利用分泌表达策略来控制毒蛋白的表达。蛋白质基因序列本身显著影响其表达,而这种影响背后的机制错综复杂,潜在的影响因素包括密码子使用、mRNA结构等。可以通过密码子优化和加入融合标签来解决蛋白不表达的问题。同时,人工智能的进步使研究人员能够从新的角度重新设计基因序列。通过学习广泛的蛋白质表达数据库,人工智能可以识别隐藏的序列特征,提供导致蛋白质高表达的序列预测。利用人工智能仍然是一种可行的方法,最新的大型语言模型已经可以促进从头设计蛋白质。预计在未来,基于核酸设计靶蛋白的基因序列也将成为可能。

迈思生物拥有一个由充满热情的多年深耕蛋白重组表达研发人员组成的CRO团队,我们为广泛科研工作者及企业提供重组蛋白开发服务:为不同特性的蛋白开发适当的基因合成到蛋白质表达的方法,服务您的目标蛋白生产的每一步,包括但不限于基因合成、分子克隆、蛋白表达、蛋白纯化、蛋白修饰、诱变和表征。


更多服务及产品内容欢迎咨询了解。咨询电话:15387173921(微信同号)。


更多推荐

01

蛋白&抗体稳转细胞株构建服务

02

案例:一个兔单克隆中和抗体的诞生

03

哺乳系统-重组抗体表达服务

04

抗体测序服务:探索抗体未知序列信息

关于我们

武汉迈思生物科技有限公司立足于解决行业内功能活性蛋白及高质量、高通量抗体开发难的痛点,依托自建的两大核心平台:哺乳细胞蛋白表达平台和B细胞抗体开发平台,竭诚为广大科学研究机构和诊断、医药企业客户提供一站式抗体开发服务。公司业务涉及功能活性蛋白重组表达,科研应用、诊断应用、药用抗体早期发现的重组兔单克隆抗体开发,重组抗体表达,稳定细胞株构建等服务。



迈思生物
依托 真核哺乳细胞重组表达平台 \x26amp; 重组兔单抗开发平台:提供功能活性蛋白表达和高效重组抗体定制的优质服务。
 最新文章