单细胞空间转录组中细胞类型与通路关联分析(单细胞丰度与细胞通路相关性分析)-多组差异分析、相关性分析 热图展示

文摘   2024-10-16 23:42   江苏  

上一次我们分享过单细胞多组差异分析-多组火山图

那么如何使用定制数据画多组火山图呢?


准备数据



#request 2.libPaths(c( "/home/data/t040413/R/x86_64-pc-linux-gnu-library/4.2", "/home/data/t040413/R/yll/usr/local/lib/R/site-library", "/refdir/Rlib/", "/usr/local/lib/R/library"))

dir.create("~/silicosis/spatial/new_spatial/20241011-cell_signals_in spatial cell types")setwd("~/silicosis/spatial/new_spatial/20241011-cell_signals_in spatial cell types")library(Seurat)library(dplyr)library(scRNAtoolVis)
load("~/silicosis/spatial/new_spatial/d.all_with_metadata.rds")d_all=d.all
load("~/silicosis/spatial_c2l_results/silicosis_mapped_after_kaiti/barcodes_cellltypes_proportion.Rdata")load("~/silicosis/spatial_c2l_results/silicosis_mapped_after_kaiti/sc_silicosis_analysis/cell2location_map/st_meta_rotate.rds")
load("~/silicosis/spatial_c2l_results/silicosis_mapped_after_kaiti/major_abundance.rds")head(major_abundance)head(d.all@meta.data)head(st_meta)head(wide_df)
boxplot(wide_df$AT2.cell.1)boxplot(wide_df$AT2.cell.2)

#1 获取细胞丰度信息------major_abundance=major_abundance[d.all$col,] ;head(major_abundance)identical( unname(d.all$col) ,rownames(major_abundance))dim(d.all)dim(major_abundance)
head(d.all@meta.data)head(major_abundance)

delete_dot=function(x ) { x <- gsub(pattern = "\\.+", replacement = " ", x, perl = TRUE) # Apply gsub directly to x return(x)}delete_dot("asfdafd.afd")
colnames(major_abundance)=delete_dot(colnames(major_abundance)) ;head(major_abundance)head(d.all@meta.data)head(major_abundance)


#2获取细胞信号信息----head(d.all@meta.data)
#2.1提取并制备人的mouse列表---------if(F){ msigdbr::msigdbr_collections() all_gene_sets_hs = msigdbr::msigdbr(species = "Homo sapiens") #Mus musculus Homo sapiens ,category = "C2",subcategory = "CP" dim(all_gene_sets_hs) # saveRDS(all_gene_sets_hs,file="~/datasets/all_gene_sets_hs_msigdb.rds") all_gene_sets_hs = msigdbr::msigdbr(species = "Mus musculus" ) #Mus musculus Homo sapiens dim(all_gene_sets_hs) # saveRDS(all_gene_sets_hs,file="~/datasets/all_gene_sets_mm_msigdb.rds") all_gene_sets_hs table(all_gene_sets_hs$gs_subcat) table(all_gene_sets_hs$gs_cat) #假设我们这里想要寻找的是APOPTOSIS相关通路 #pattern参数内输入想要寻找的关键词,这里用的是"APOPTOSIS" h2 <- all_gene_sets_hs #all_gene_sets_hs[grep(pattern = "APOPTOSIS",x = all_gene_sets_hs$gs_name,ignore.case = TRUE),] length(unique(h2$gs_name))#查看唯一通路 length(unique(h2$human_gene_symbol))#查看所有通路中的唯一基因 length(unique(h2$gene_symbol))#查看所有通路中的唯一基因 table(h2$gs_subcat) #table(h2$gs_name) h2 getwd() #openxlsx::write.xlsx(h2,"allPathway.xlsx")#保存结果 #save(h2,file = "allPathway.rds") # 将数据转换为嵌套列表------------ nested_list <- h2 %>% group_by(gs_cat, gs_name) %>% summarise(gene_symbol = list(gene_symbol), .groups = 'drop') %>% group_by(gs_cat) %>% summarise(gs_name = list(set_names(gene_symbol, gs_name)), .groups = 'drop') %>% deframe() # 查看结果 # nested_list$C1[[1]] # head(names(nested_list$C1)) mygenes=nested_list }
#load("~/silicosis/spatial/new_spatial/d.all_with_metadata.rds")
DimPlot(d.all,label = TRUE)
SpatialDimPlot(d.all,ncol = 2)
if (F) { get_one_slideimage=function(slide,image_name="NS_7"){ # slide=eachslide tmpimages=slide@images[[image_name]] slide@images=list() slide@images[[image_name]]=tmpimages return(slide) } SiO2_7=get_one_slideimage(d.all,image_name = "SiO2_7") ;SiO2_7 table(Idents(SiO2_7)=='AM3⁺ Inmt⁻') head(d.all@meta.data) SiO2_7$leiden_res0.8= as.factor(SiO2_7$leiden_res0.8) is.na(SiO2_7$leiden_res0.8) %>%table() Idents(SiO2_7)=SiO2_7$leiden_res0.8 SpatialDimPlot(d.all, #group.by = 'leiden_res0.8', cells.highlight = colnames(SiO2_7)[SiO2_7$leiden_res0.8=='1'], ncol = 2 #, images = "SiO2_7" ) Idents(sample_seurat) = sample_seurat$opt_clust # opt_clust为seurat clusters.colors=mycol[15:25] names(colors) <- Idents(sample_seurat) %>% levels() ## 命名非常重要 spatial_embedding <- SpatialDimPlot( sample_seurat, images = "slice1", group.by = c("opt_clust"), pt.size.factor = 1.15, label = TRUE, label.size = 6, repel = TRUE, combine = FALSE, cols = colors) spatial_embedding ## 成功! }mylist=SplitObject(d.all,split.by = "stim")lapply( mylist, dim)

# 含每行非零元素的个数# d.all@assays$Spatial@counts %>% apply(., 2, function(x) sum(x != 0)) #sapply(., function(x) sum(x != 0)) #colSums()
d.all$genes_per_spot=d.all@assays$SCT@counts %>% apply(., 2, function(x) sum(x != 0)) #sapply(., function(x) sum(x != 0)) #colSums()
d.all@assays$SCT@meta.features$spot_per_gene=d.all@assays$SCT@counts %>% apply(., 1, function(x) sum(x != 0))


计算细胞丰度与细胞通路相关性 

#2.2cc包装成函数  -----if (T) {  # 导入必要的包  library(Seurat)  library(dplyr)    # 定义函数  visualize_pathway <- function(h2_path, d_all, pathway_name,min.cutoff = "q0.8",max.cutoff = "q99.99") {    # 读取h2数据    # 检查 h2 对象是否存在    if (!exists("h2", envir = .GlobalEnv)) {      # 如果 h2 对象不存在,则加载它      h2 <<- readRDS(h2_path)    } else {      # 如果 h2 对象已经存在,则打印提示信息      print("h2 对象已存在,不需要加载。")    } #在这个版本中,h2 对象使用 <<- 操作符在全局环境中定义。如果你不想使用全局变量,可以在函数外部加载 h2 对象,并将其作为参数传递给函数            # 打印h2对象    #  print(h2)    #  pathway_name="GOCC_ALVEOLAR_LAMELLAR_BODY"        #"gocc-ALVEOLAR-LAMELLAR-BODY"        # 检查含有特定字符串的通路    matched_pathways <- h2[grepl(h2$gs_name, pattern = pathway_name, ignore.case = TRUE),]         # 打印匹配的通路    print(matched_pathways)        # 筛选特定通路    desired_list <- h2[h2$gs_name == gsub(pattern = "-", replacement = "_", x = pathway_name),] %>%      split(x = .$gene_symbol, f = .$gs_name);print(desired_list)        # 添加模块得分    d_all <- AddModuleScore(d_all, features = desired_list)        # 更新元数据    d_all@meta.data[[names(desired_list)]] <- d_all@meta.data$Cluster1    head(d_all@meta.data)            return(d_all)    # 可视化特定通路    # SpatialFeaturePlot(d_all,crop = FALSE, keep.scale = 'all', pt.size.factor=1,    #                    features = names(desired_list),     #                    ncol = 2,     #                    # stroke = 0,    #                    max.cutoff =max.cutoff,    #                    min.cutoff  =min.cutoff    # )    #     # jpeg(  paste0(names(desired_list),".jpeg"), res = 300, width = 22, height = 22, units = "in")    # p=SpatialFeaturePlot(d_all,crop = FALSE, keep.scale = 'all', pt.size.factor=1,    #                      features = names(desired_list),     #                      ncol = 2 ,    #                      # stroke = 0,    #                      max.cutoff =max.cutoff,    #                      min.cutoff  =min.cutoff    # )    # plot(p)    #     # dev.off()    #       }  }

#2.3示例调用----h2_path <- "~/datasets/all_gene_sets_mm_msigdb.rds"
d_all <- d.all # 替换为你的d.all对象
head(d_all@meta.data)
pathway_name <- "ALTEMEIER-RESPONSE-TO-LPS-WITH-MECHANICAL-VENTILATION" #"GOCC-LAMELLAR-BODY"#"REACTOME-RELEASE-OF-APOPTOTIC-FACTORS-FROM-THE-MITOCHONDRIA" #"GOBP-POSITIVE-REGULATION-OF-APOPTOTIC-CELL-CLEARANCE"# "GOBP-NEGATIVE-REGULATION-OF-MITOCHONDRIAL-MEMBRANE-PERMEABILITY-INVOLVED-IN-APOPTOTIC-PROCESS" #"GOBP-POSITIVE-REGULATION-OF-APOPTOTIC-CELL-CLEARANCE" # "GOBP-INTRINSIC-APOPTOTIC-SIGNALING-PATHWAY-IN-RESPONSE-TO-HYPOXIA" #"REACTOME-APOPTOTIC-CLEAVAGE-OF-CELL-ADHESION-PROTEINS"#"GOBP-NEGATIVE-REGULATION-OF-MITOCHONDRIAL-MEMBRANE-PERMEABILITY-INVOLVED-IN-APOPTOTIC-PROCESS" #"GOCC_ALVEOLAR_LAMELLAR_BODY"
visualize_pathway(h2_path = h2_path, d_all = d_all, pathway_name = pathway_name, min.cutoff = 'q0.1',max.cutoff = 'q99.9')getwd()
head(d_all@meta.data)


#2.4 批量产生信号通路信息----markers=read.csv("~/silicosis_spatial/features_in spatial/gsva_markers_Deseq2_difpct0.5.csv")head(markers);dim(markers)mygenes= markers %>% group_by(cluster) %>% slice_max(order_by = avg_log2FC,n = 50) %>% dplyr:: select(gene) %>%.$gene %>%unique() ;mygenes

for (each in mygenes) { d_all=visualize_pathway(h2_path = h2_path, d_all = d_all, pathway_name = each, min.cutoff = "q1",max.cutoff = "q99.9") }load("/home/data/t040413/silicosis/spatial/new_spatial/20241011-cell_signals_in spatial cell types/cell_signal_in_spatial.rds")cell_signals_in_spatial
head(d_all@meta.data)
cell_signals_in_spatial=d_all@meta.datarownames(cell_signals_in_spatial)=d_all@meta.data$col
getwd()#save(cell_signals_in_spatial,file = "/home/data/t040413/silicosis/spatial/new_spatial/20241011-cell_signals_in spatial cell types/cell_signal_in_spatial.rds")load("/home/data/t040413/silicosis/spatial/new_spatial/20241011-cell_signals_in spatial cell types/cell_signal_in_spatial.rds")


#3.1 celltypes_info----load("~/silicosis/spatial_c2l_results/silicosis_mapped_after_kaiti/major_abundance.rds")head(major_abundance)cell_abundance=major_abundance[d.all$col,] ;head(major_abundance)identical( unname(d.all$col) ,rownames(cell_abundance))delete_dot=function(x ) { x <- gsub(pattern = "\\.+", replacement = " ", x, perl = TRUE) # Apply gsub directly to x return(x)}delete_dot("asfdafd.afd")
colnames(cell_abundance)=delete_dot(colnames(cell_abundance)) ;head(cell_abundance)head(d_all@meta.data)head(cell_abundance);dim(cell_abundance)


#3.2 features_info----features_abundance= cell_signals_in_spatial[ , which( colnames(cell_signals_in_spatial)=="NAKAMURA_BRONCHIAL_AND_BRONCHIOLAR_EPITHELIA" ) : which( colnames(cell_signals_in_spatial)=="GOBP_REGULATION_OF_CARDIAC_MUSCLE_CELL_MEMBRANE_POTENTIAL")]
head(features_abundance);dim(features_abundance)colnames(features_abundance)
features_abundance= features_abundance [ unname(d.all$col),] ;head(features_abundance )identical( unname(d.all$col) ,rownames(features_abundance ))
head(cell_abundance)[,1:6]head(features_abundance)[,1:6]
##验证是否正确-----d.all$'Tissue structure'=ifelse(grepl(pattern = "Bronchial",x = d.all$clusters),"Airway", ifelse( grepl(pattern = "ascula",x = d.all$clusters) ,"Vessel","Alveolar") )
print( identical(rownames(features_abundance),rownames(cell_abundance)))

#j计算相关性,并添加adj.pval-------celltype_feature_list = list()for (my_desired_celltype in colnames(cell_abundance)) { combined.data = cbind(cell_abundance[, my_desired_celltype], features_abundance) colnames(combined.data)[1] = my_desired_celltype combined.data$group = stringr::str_split(string = rownames(combined.data), pattern = "_", simplify = TRUE)[, c(1, 2)] %>% apply(., 1, function(x) paste(x[1], x[2], sep = "_")) combined.data$clusters = d.all$clusters combined.data$`Tissue structure` = d.all$`Tissue structure` # 数据筛选 data_filtered <- combined.data %>% filter(grepl(pattern = "_", x = .$group)) # 将数据从宽格式转换为长格式 data_long <- data_filtered %>% tidyr::pivot_longer(cols = 2:237, names_to = "features", values_to = "Value") # 计算相关系数和p值 correlations <- data_long %>% group_by(features) %>% summarise(Correlation = cor.test(!!sym(my_desired_celltype), Value)$estimate, P.value = cor.test(!!sym(my_desired_celltype), Value)$p.value) %>% mutate(Significance = case_when( P.value < 0.001 ~ "***", P.value < 0.01 ~ "**", P.value < 0.05 ~ "*", TRUE ~ "ns" ), Label = paste(features, "\nr =", round(Correlation, 2), Significance, sep = " ")) # 添加调整后的p值 correlations <- correlations %>% mutate(adj.pval = p.adjust(P.value, method = "BH")) # 使用Benjamini-Hochberg校正 # 添加celltype列 correlations$celltype = my_desired_celltype # 存储结果 celltype_feature_list[[my_desired_celltype]] = correlations print(paste0("done === ", my_desired_celltype))}


celltype_feature_listif (T) { # Function to extract top 20 positive and top 20 negative correlations extract_top_correlations <- function(cor_tibble, n = 20) { # Sort by correlation value in descending order to get top positive correlations top_pos <- cor_tibble %>% filter(P.value<0.05 ) %>% arrange(desc(Correlation)) %>% slice_head(n = n) # Sort by correlation value in ascending order to get top negative correlations top_neg <- cor_tibble %>% filter(P.value<0.05 ) %>% arrange(Correlation) %>% slice_head(n = n) # Combine the top positive and negative correlations result <- list( top_positive = top_pos, top_negative = top_neg ) return(result) } # Apply the function to each cell type tibble in the list top_correlations_list <- lapply(celltype_feature_list, extract_top_correlations) # Print the results for the first cell type as an example top_correlations_list[[1]] } celltype_feature_list
celltype_feature_df= Reduce( rbind,celltype_feature_list) #%>%head()View(celltype_feature_df)library(dplyr)

#给这个数据框添加新的一列Correlation_type-----if (F) { celltype_feature_df$avg_log2FC=celltype_feature_df$Correlation celltype_feature_df$p_val_adj=celltype_feature_df$adj.pval celltype_feature_df$cluster=celltype_feature_df$celltype celltype_feature_df$gene=celltype_feature_df$features celltype_feature_df$p_val=celltype_feature_df$P.value celltype_feature_df$pct.2=celltype_feature_df$p_val_adj celltype_feature_df$pct.1=0 celltype_feature_df$log_adj.pval=log ( celltype_feature_df$p_val_adj +0.00000000001) celltype_feature_df$pct.2=celltype_feature_df$log_adj.pval }celltype_feature_df <- celltype_feature_df %>% group_by(cluster) %>% mutate( # Define quantiles for top and bottom 5% top5_threshold = quantile(Correlation, 0.95), bottom5_threshold = quantile(Correlation, 0.05), # Create Correlation_type based on conditions Correlation_type = case_when( Correlation >= top5_threshold ~ "top5%", Correlation <= bottom5_threshold ~ "bottom5%", TRUE ~ "middle" ) ) # Remove temporary columns used for threshold calculations # %>% select(-top5_threshold, -bottom5_threshold)celltype_feature_df <- celltype_feature_df %>% group_by(cluster) %>% mutate( # Define quantiles for top and bottom 1% top1_threshold = quantile(Correlation, 0.99), bottom1_threshold = quantile(Correlation, 0.01), # Create Correlation_type based on conditions Correlation_type2 = case_when( Correlation >= top1_threshold ~ "top1%", Correlation <= bottom1_threshold ~ "bottom1%", TRUE ~ "middle" ) ) # View the updated dataframeprint(celltype_feature_df)# 定义函数#save(celltype_feature_list,celltype_feature_df,top_correlations_list,file = "/home/data/t040413/silicosis/spatial/new_spatial/20241011-cell_signals_in spatial cell types/celltype_features_correlations.rdata")
load("/home/data/t040413/silicosis/spatial/new_spatial/20241011-cell_signals_in spatial cell types/celltype_features_correlations.rdata")


选择想要的细胞通路与细胞类型


h2_path="~/datasets/all_gene_sets_mm_msigdb.rds"# 检查 h2 对象是否存在if (!exists("h2", envir = .GlobalEnv)) { # 如果 h2 对象不存在,则加载它 h2 <<- readRDS(h2_path)} else { # 如果 h2 对象已经存在,则打印提示信息 print("h2 对象已存在,不需要加载。")} #在这个版本中,h2 对象使用 <<- 操作符在全局环境中定义。如果你不想使用全局变量,可以在函数外部加载 h2 对象,并将其作为参数传递给函数
h2_list= split( x = h2[,c('gene_symbol' ,'gs_name')] ,f = h2$gs_name)grep (pattern = "BP",x = h2$gs_subcat,ignore.case = T,value = TRUE)
intersect(h2$gs_name,celltype_feature_df$features)intersect(h2$gs_name,names(h2_list))
celltype_feature_df$genes
# for (each in celltype_feature_df$features ) {# # each="AUJLA_IL22_AND_IL17A_SIGNALING"# # if ( each %in% names(h2_list) ) {# celltype_feature_df [ celltype_feature_df$features==each,]$genes = list(h2_list[[each]]$gene_symbol)# # }# # }# 确保 genes 列存在,如果没有,可以初始化一个空列if (!"genes" %in% colnames(celltype_feature_df)) { celltype_feature_df$genes <- NA}
for (each in celltype_feature_df$features) { # 如果 'features' 在 h2_list 中 if (each %in% names(h2_list)) { # 使用 paste 函数将基因符号合并成一个字符串 gene_symbols <- paste(h2_list[[each]]$gene_symbol, collapse = ", ") # 找到相应的行,并将基因符号字符串赋值到 'genes' 列 celltype_feature_df$genes[celltype_feature_df$features == each] <- gene_symbols }}
celltype_feature_df
if (T) { library(dplyr) library(tidyr) # 将每一行的基因名称按逗号分隔开,创建一个新的行来表示每个基因 df_genes <- celltype_feature_df %>% ungroup( ) %>% filter( adj.pval<0.01 & grepl(x = .$features,pattern="blood|vess|endotheli",ignore.case=T) ) %>% dplyr::select(features,genes) %>% # 使用 separate_rows 来分割 genes 列 separate_rows(genes, sep = ", ") %>% # 去除前后空格(确保一致性) mutate(genes = trimws(genes)) # 统计每个基因的出现频率 gene_frequency <- df_genes %>% group_by(genes) %>% summarise(frequency = n()) %>% arrange(desc(frequency)) ;gene_frequency # 按频率降序排列 # 输出结果 print(gene_frequency) gene_frequency$genes }

计算基因出现频率



画出所有细胞通路与细胞之间的相关性分析图


celltype_feature_list
celltype_feature_selected= celltype_feature_df %>% group_by(celltype) %>% filter( P.value<0.01 & abs(Correlation)>0.2 )table(celltype_feature_selected$celltype)length(unique(celltype_feature_selected$celltype))
#

# p_val avg_log2FC pct.1 pct.2 p_val_adj cluster genehead(celltype_feature_df)
library(scRNAtoolVis)# testdata('pbmc.markers')head(pbmc.markers)# plotjjVolcano(diffData = pbmc.markers )

celltype_feature_df$avg_log2FC=celltype_feature_df$Correlationcelltype_feature_df$p_val_adj=celltype_feature_df$adj.pvalcelltype_feature_df$cluster=celltype_feature_df$celltypecelltype_feature_df$gene=celltype_feature_df$featurescelltype_feature_df$p_val=celltype_feature_df$P.value
celltype_feature_df$pct.2=celltype_feature_df$p_val_adjcelltype_feature_df$pct.1=0

celltype_feature_df$log_adj.pval=log ( celltype_feature_df$p_val_adj +0.000000000000000001)celltype_feature_df$pct.2=celltype_feature_df$log_adj.pval#write.csv(celltype_feature_df,file = "/home/data/t040413/silicosis/spatial/new_spatial/20241011-cell_signals_in spatial cell types/celltype_feature_df.csv")getwd()head(celltype_feature_df)

# supply own genesmygene <- c('NAKAMURA_BRONCHIAL_AND_BRONCHIOLAR_EPITHELIA', "GOBP_SEQUESTERING_OF_IRON_ION","GOBP_LYMPHATIC_ENDOTHELIAL_CELL_DIFFERENTIATION")

trace(markerVocalno, edit = T)
#修改函数------
markerVocalno <- function (markers = NULL, ownGene = NULL, topn = 5, log2FC = 0.25, toppos=NULL, topnegtive=NULL, lableSize=3, labelCol = NULL, hlineSize = 1, hlineColor = "grey50", random_number=0.001, pforce = 5, nforce = 2.5, nudge_x = 0.8, pnudge_y = 0.25, nnudge_y = 0, base_size = 14, facetColor = NA, facetFill = "white", ylab = "Log2-Fold Change", nrow = 1) { # 筛选顶层正负基因 if (is.null(ownGene)) { #此处可以使用自己筛选好想要添加label的基因---- toppos <- toppos %>% dplyr::group_by(cluster) %>% dplyr::slice_max(avg_log2FC, n = topn) #markers %>% dplyr::group_by(cluster) %>% dplyr::slice_max(avg_log2FC, n = topn) topnegtive <- topnegtive %>% dplyr::group_by(cluster) %>% dplyr::slice_min(avg_log2FC, n = topn) #markers %>% dplyr::group_by(cluster) %>% dplyr::slice_min(avg_log2FC, n = topn) topgene <- rbind(toppos, topnegtive) } else { topgene <- markers %>% dplyr::filter(gene %in% ownGene) toppos <- topgene %>% dplyr::filter(avg_log2FC > 0) topnegtive <- topgene %>% dplyr::filter(avg_log2FC < 0) } # 生成基础散点图 p1 <- ggplot2::ggplot(markers, ggplot2::aes(x = pct.1 - pct.2, y = avg_log2FC)) + ggplot2::geom_point(color = "grey80") + ggplot2::geom_hline(yintercept = c(-log2FC, log2FC), lty = "dashed", size = hlineSize, color = hlineColor) # 加入文本标签和颜色 set.seed(1) p2 <- p1 + ggrepel::geom_text_repel(data = toppos, ggplot2::aes(x = pct.1 - pct.2, y = avg_log2FC, label = gene, color = cluster), show.legend = F, direction = "y", hjust = 1, nudge_y = pnudge_y, #调整label大小 增加随机波动 size = lableSize, force = pforce, nudge_x = -nudge_x - (toppos$pct.1 - toppos$pct.2) +runif(1,min = 0,max=random_number) ) + ggrepel::geom_text_repel(data = topnegtive, ggplot2::aes(x = pct.1 - pct.2, y = avg_log2FC, label = gene, color = cluster), show.legend = F, direction = "y", hjust = 0, nudge_y = nnudge_y, #调整label大小 增加随机波动 size = lableSize, force = nforce, nudge_x = nudge_x - (topnegtive$pct.1 - topnegtive$pct.2) +runif(1,min = 0,max=random_number) ) + ggplot2::geom_point(data = topgene, ggplot2::aes(x = pct.1 - pct.2, y = avg_log2FC, color = cluster), show.legend = F) + ggplot2::scale_color_manual(name = "", values = labelCol) + ggplot2::theme_bw(base_size = base_size) + ggplot2::theme(panel.grid = ggplot2::element_blank(), axis.text.x = ggplot2::element_text(angle = 45, hjust = 1), strip.background = ggplot2::element_rect(color = facetColor, fill = facetFill)) + ggplot2::xlab(expression(Delta ~ "Percentage Difference")) + ggplot2::ylab(ylab) + ggplot2::facet_wrap(~cluster, nrow = nrow, scales = "fixed") return(p2)}

#top5-----p= markerVocalno(markers = celltype_feature_df, lableSize = 1.62, #ownGene = mygene, # topn = 5, toppos = celltype_feature_df[ celltype_feature_df$Correlation_type =='top5%',], topnegtive = celltype_feature_df[ celltype_feature_df$Correlation_type =='bottom5%',], pforce = 2,nforce = 0.9,random_number =0.001, log2FC = 0.2, nrow = 5, labelCol = c("#EE3B3B", "#FF7F00", "#CD6600", "#8B2323", "darkred", "darkgreen", "#008B8B", "#FFB90F", "#1F1F1F", "#66CD00", "#0000FF", "darkorange", "#528B8B", "#9400D3", "#EE1289", "#00BFFF", "#00FF00", "#191970", "darkblue", "#4A708B", "#00FF7F", "#8B8B00", "#FF1493", "#FFA500", "#8B4513","red","purple","lightblue","#F5F5DC", "#F0FFFF"))+ylab("Correlation")+ xlab("-Log adj.Pval") ggsave(plot=p,filename = "/home/data/t040413/silicosis/spatial/new_spatial/20241011-cell_signals_in spatial cell types/top1——top5-pnfore-labelsize1-random.6234.jpeg", width = 20,height = 20,limitsize = FALSE,dpi = 300)getwd()
ggsave(plot=p,filename = "/home/data/t040413/silicosis/spatial/new_spatial/20241011-cell_signals_in spatial cell types/top1——top5-pnfore-labelsize1-random.6234.pdf", width = 20,height = 20,limitsize = FALSE,dpi = 600)getwd()
runif(1,0,0).libPaths(c( # "/home/data/t040413/R/x86_64-pc-linux-gnu-library/4.2", #"/home/data/t040413/R/yll/usr/local/lib/R/site-library", "/refdir/Rlib/", "/usr/local/lib/R/library"))
library(export)graph2ppt(x=p,file="celltypes_signals_in spatial.pptx",width = 18,height = 18)

#top1-----markerVocalno(markers = celltype_feature_df,lableSize = 2, #ownGene = mygene, topn = 5, toppos = celltype_feature_df[ celltype_feature_df$Correlation_type2=='top1%',], topnegtive = celltype_feature_df[ celltype_feature_df$Correlation_type2=='bottom1%',], log2FC = 0.2, nrow = 5, labelCol = c("#EE3B3B", "#FF7F00", "#CD6600", "#8B2323", "darkred", "darkgreen", "#008B8B", "#FFB90F", "#1F1F1F", "#66CD00", "#0000FF", "darkorange", "#528B8B", "#9400D3", "#EE1289", "#00BFFF", "#00FF00", "#191970", "darkblue", "#4A708B", "#00FF7F", "#8B8B00", "#FF1493", "#FFA500", "#8B4513","red","purple","lightblue","#F5F5DC", "#F0FFFF"))+ylab("Correlation")+ xlab("-Log adj.Pval")
ggsave(filename = "/home/data/t040413/silicosis/spatial/new_spatial/20241011-cell_signals_in spatial cell types/top1——top1-=.png", width = 18,height = 18,limitsize = FALSE,dpi = 900)getwd()


#trance the library is loaded, use
trace(jjVolcano, edit = T)getAnywhere(jjVolcano)edit(jjVolcano)
pkg_path <- find.package("scRNAtoolVis")print(pkg_path)list.files(file.path(pkg_path, "R"), full.names = TRUE)file.edit("path/to/your/file.R")

# supply own genesmygene <- c('NAKAMURA_BRONCHIAL_AND_BRONCHIOLAR_EPITHELIA', "GOBP_SEQUESTERING_OF_IRON_ION","GOBP_LYMPHATIC_ENDOTHELIAL_CELL_DIFFERENTIATION")

markerVocalno(markers = celltype_feature_df,labelCol = seq(1,25,1) )
jjVolcano(diffData = celltype_feature_df, order.by = "avg_log2FC", aesCol = c('blue','red'), col.type ='adjustP', # "updown", # log2FC.cutoff=1, # topGeneN = 3, myMarkers = mygene, # tile.col = corrplot::COL2('RdBu', 15)[4:12] , fontface = 'italic', cluster.order = rev(unique(celltype_feature_df$cluster)), tile.col = c("#EE3B3B", "#FF7F00", "#CD6600", "#8B2323", "#DEB887", "#76EEC6", "#F0FFFF", "#008B8B", "#FFB90F", "#F5F5DC", "#1F1F1F", "#66CD00", "#0000FF", "#97FFFF", "#528B8B", "#9400D3", "#EE1289", "#00BFFF", "#00FF00", "#191970", "#FFFF00", "#4A708B", "#00FF7F", "#8B8B00", "#FF1493", "#FFA500", "#8B4513","red","grey","lightblue"), celltypeSize=3, base_size = 9 ) +
ggplot2::xlab("Clusters") + ggplot2::ylab("Correlation") + ggplot2::scale_y_continuous(n.breaks = 6)







jjVolcano(diffData = celltype_feature_df,polar = T, order.by = "avg_log2FC", aesCol = c('blue','red'), # log2FC.cutoff=1, # topGeneN = 3, myMarkers = mygene, # tile.col = corrplot::COL2('RdBu', 15)[4:12] , fontface = 'italic', fontsize=0.1, cluster.order = rev(unique(celltype_feature_df$cluster)), tile.col = c("#EE3B3B", "#FF7F00", "#CD6600", "#8B2323", "#DEB887", "#76EEC6", "#F0FFFF", "#008B8B", "#FFB90F", "#F5F5DC", "#1F1F1F", "#66CD00", "#0000FF", "#97FFFF", "#528B8B", "#9400D3", "#EE1289", "#00BFFF", "#00FF00", "#191970", "#FFFF00", "#4A708B", "#00FF7F", "#8B8B00", "#FF1493", "#FFA500", "#8B4513","red","grey","lightblue"))




生信小博士
【生物信息学】R语言开始,学习生信。Seurat,单细胞测序,空间转录组。 Python,scanpy,cell2location。资料分享
 最新文章