参考文献:
[1]TAU G Z, PETERSON B S. Normal development of brain circuits[J]. Neuropsychopharmacology, 2010, 35(1): 147-168. doi: 10.1038/npp.2009.115
[2]DOI M, USUI N, SHIMADA S. Prenatal environment and neurodevelopmental disorders[J]. Front Endocrinol (Lausanne), 2022, 13: 860110. doi: 10.3389/fendo.2022.860110
[3]BARKER D J P. The origins of the developmental origins theory[J]. J Intern Med, 2007, 261(5): 412-417. doi: 10.1111/j.1365-2796.2007.01809.x
[4]HU Z, YIN L, WEN X, et al. Organophosphate esters in China: fate, occurrence, and human exposure[J]. Toxics, 2021, 9(11): 310. doi: 10.3390/toxics9110310
[5]HOU M, SHI Y, JIN Q, et al. Organophosphate esters and their metabolites in paired human whole blood, serum, and urine as biomarkers of exposure[J]. Environ Int, 2020, 139: 105698. doi: 10.1016/j.envint.2020.10569
[6]ZHANG Q, WANG Y, WANG L, et al. A review of organophosphate esters in soil: Implications for the potential source, transfer, and transformation mechanism[J]. Environ Res, 2022, 204: 112122. doi: 10.1016/j.envres.2021.112122
[7]ZHOU Y, ZHANG L, WANG P, et al. Prenatal organophosphate esters exposure and neurodevelopment trajectory in infancy: evidence from the Shanghai maternal-child pairs cohort[J]. Sci Total Environ, 2024, 927: 172366. doi: 10.1016/j.scitotenv.2024.172366
[8]LU M, GAN H, ZHOU Q, et al. Trimester-specific effect of maternal co-exposure to organophosphate esters and phthalates on preschooler cognitive development: the moderating role of gestational vitamin D status[J]. Environ Res, 2024, 251: 118536. doi: 10.1016/j.envres.2024.118536
[9]LIU W, LUO D, XIA W, et al. Prenatal exposure to halogenated, aryl, and alkyl organophosphate esters and child neurodevelopment at two years of age[J]. J Hazard Mater, 2021, 408: 124856. doi: 10.1016/j.jhazmat.2020.124856
[10]CHUPEAU Z, BONVALLOT N, MERCIER F, et al. Organophosphorus flame retardants: a global review of indoor contamination and human exposure in Europe and epidemiological evidence[J]. Int J Environ Res Public Health, 2020, 17(18): 6713. doi: 10.3390/ijerph17186713
[11]HE C, TOMS L L, THAI P, et al. Urinary metabolites of organophosphate esters: concentrations and age trends in Australian children[J]. Environ Int, 2018, 111: 124-130. doi: 10.1016/j.envint.2017.11.019
[12]VIOLAKI K, CASTRO-JIMÉNEZ J, NENES A, et al. Spatial and temporal patterns of organophosphate Esters flame retardants and plasticizers in airborne particles over the Mediterranean sea[J]. Chemosphere, 2024, 348: 140746. doi: 10.1016/j.chemosphere.2023.140746
[13]DOHERTY B T, HOFFMAN K, KEIL A P, et al. Prenatal exposure to organophosphate esters and behavioral development in young children in the pregnancy, infection, and nutrition study[J]. Neurotoxicology, 2019, 73: 150-160. doi: 10.1016/j.neuro.2019.03.007
[14]DOHERTY B T, HOFFMAN K, KEIL A P, et al. Prenatal exposure to organophosphate esters and cognitive development in young children in the Pregnancy, Infection, and Nutrition Study[J]. Environ Res, 2019, 69: 33-40.
[15]CHOI G, KEIL A P, RICHARDSON D B, et al. Pregnancy exposure to organophosphate esters and the risk of attention-deficit hyperactivity disorder in the Norwegian mother, father and child cohort study[J]. Environ Int, 2021, 154: 106549. doi: 10.1016/j.envint.2021.106549
[16]HALL A M, KEIL A P, CHOI G, et al. Prenatal organophosphate ester exposure and executive function in Norwegian preschoolers[J]. Environ Epidemiol, 2023, 7(3): e251. doi: 10.1097/EE9.0000000000000251
[17]PERCY Z, VUONG A M, XU Y, et al. Prenatal exposure to a mixture of organophosphate esters and intelligence among 8-year-old children of the HOME Study[J]. Neurotoxicology, 2021, 87: 149-155. doi: 10.1016/j.neuro.2021.09.005
[18]CASTORINA R, BRADMAN A, STAPLETON H M, et al. Current-use flame retardants: Maternal exposure and neurodevelopment in children of the CHAMACOS cohort[J]. Chemosphere, 2017, 189: 574-580. doi: 10.1016/j.chemosphere.2017.09.037
[19]HERNANDEZ-CASTRO I, ECKEL S P, CHEN X, et al. Prenatal exposures to organophosphate ester metabolites and early motor development in the MADRES cohort[J]. Environ Pollut, 2024, 342: 123131. doi: 10.1016/j.envpol.2023.123131
[20]HERNANDEZ-CASTRO I, ECKEL S P, HOWE C G, et al. Prenatal exposures to organophosphate ester metabolite mixtures and children's neurobehavioral outcomes in the MADRES pregnancy cohort[J]. Environ Health, 2023, 22(1): 66. doi: 10.1186/s12940-023-01017-3
[21]WIERSIELIS K R, ADAMS S, YASREBI A, et al. Maternal exposure to organophosphate flame retardants alters locomotor and anxiety-like behavior in male and female adult offspring[J]. Horm Behav, 2020, 122: 104759. doi: 10.1016/j.yhbeh.2020.104759
[22]ADAMS S, WIERSIELIS K, YASREBI A, et al. Sex- and age-dependent effects of maternal organophosphate flame-retardant exposure on neonatal hypothalamic and hepatic gene expression[J]. Reprod Toxicol, 2020, 94: 65-74. doi: 10.1016/j.reprotox.2020.04.001
[23]WITCHEY S K, AL SAMARA L, HORMAN B M, et al. Perinatal exposure to FireMaster® 550 (FM550), brominated or organophosphate flame retardants produces sex and compound specific effects on adult Wistar rat socioemotional behavior[J]. Horm Behav, 2020, 126: 104853. doi: 10.1016/j.yhbeh.2020.104853
[24]HAWKEY A B, EVANS J, HOLLOWAY Z R, et al. Developmental exposure to the flame retardant, triphenyl phosphate, causes long-lasting neurobehavioral and neurochemical dysfunction[J]. Birth Defects Res, 2023, 115(3): 357-370. doi: 10.1002/bdr2.2125
[25]SHI Q, WANG M, SHI F, et al. Developmental neurotoxicity of triphenyl phosphate in zebrafish larvae[J]. Aquat Toxicol, 2018, 203: 80-87. doi: 10.1016/j.aquatox.2018.08.001
[26]GLAZER L, HAWKEY A B, WELLS C N, et al. Developmental exposure to low concentrations of organophosphate flame retardants causes life-long behavioral alterations in Zebrafish[J]. Toxicol Sci, 2018, 165(2): 487-498. doi: 10.1093/toxsci/kfy173
[27]LI R, GUO W, LEI L, et al. Early-life exposure to the organophosphorus flame-retardant tris (1, 3-dichloro-2-propyl) phosphate induces delayed neurotoxicity associated with DNA methylation in adult zebrafish[J]. Environ Int, 2020, 134: 105293. doi: 10.1016/j.envint.2019.105293
[28]NI A, FANG L, XI M, et al. Neurotoxic effects of 2-ethylhexyl diphenyl phosphate exposure on zebrafish larvae: Insight into inflammation-driven changes in early motor behavior[J]. Sci Total Environ, 2024, 915: 170131. doi: 10.1016/j.scitotenv.2024.170131
[29]OLIVERI A N, BAILEY J M, LEVIN E D. Developmental exposure to organophosphate flame retardants causes behavioral effects in larval and adult zebrafish[J]. Neurotoxicol Teratol, 2015, 52: 220-227. doi: 10.1016/j.ntt.2015.08.008
[30]DISHAW L V, HUNTER D L, PADNOS B, et al. Developmental exposure to organophosphate flame retardants elicits overt toxicity and alters behavior in early life stage zebrafish (Danio rerio)[J]. Toxicol Sci, 2014, 142(2): 445-454. doi: 10.1093/toxsci/kfu194
[31]CHENG R, JIA Y, DAI L, et al. Tris(1, 3-dichloro-2-propyl) phosphate disrupts axonal growth, cholinergic system and motor behavior in early life zebrafish[J]. Aquat Toxicol, 2017, 192: 7-15. doi: 10.1016/j.aquatox.2017.09.003
[32]ROSENFELD C S. The placenta-brain-axis[J]. J Neurosci Res, 2021, 99(1): 271-283. doi: 10.1002/jnr.24603
[33]URE A, COX G R, HASLAM R, et al. Acetylcholinesterase inhibitors for autistic spectrum disorders[J]. Cochrane Database Syst Rev, 2023, 6(6): CD013851.
[34]SARTER M, GIVENS B, BRUNO J P. The cognitive neuroscience of sustained attention: where top-down meets bottom-up[J]. Brain Res Brain Res Rev, 2001, 35(2): 146-160. doi: 10.1016/S0165-0173(01)00044-3
[35]LIPS K S, BRÜGGMANN D, PFEIL U, et al. Nicotinic acetylcholine receptors in rat and human placenta[J]. Placenta, 2005, 26(10): 735-746. doi: 10.1016/j.placenta.2004.10.009
[36]JIANG X, BAR H Y, YAN J, et al. A higher maternal choline intake among third-trimester pregnant women lowers placental and circulating concentrations of the antiangiogenic factor fms-like tyrosine kinase-1 (sFLT1)[J]. FASEB J, 2013, 27(3): 1245-1253. doi: 10.1096/fj.12-221648
[37] 陈丽平, 孔祥. 胎盘乙酰胆碱在妊娠中的作用[J]. 湖北民族学院学报(医学版), 2009, 26(1): 70-72. doi: 10.3969/j.issn.1008-8164.2009.01.030
[38]SHI Q, GUO W, SHEN Q, et al. In vitro biolayer interferometry analysis of acetylcholinesterase as a potential target of aryl-organophosphorus flame-retardants[J]. J Hazard Mater, 2021, 409: 124999. doi: 10.1016/j.jhazmat.2020.124999
[39]FOSSIER P, BAUX G, TAUC L. Direct and indirect effects of an organophosphorus acetylcholinesterase inhibitor and of an oxime on a neuro-neuronal synapse[J]. Pflugers Arch, 1983, 396(1): 15-22. doi: 10.1007/BF00584692
[40]SHABANI Z, MAHMOUDI J, FARAJDOKHT F, et al. An overview of nicotinic cholinergic system signaling in neurogenesis[J]. Arch Med Res, 2020, 51(4): 287-296. doi: 10.1016/j.arcmed.2020.03.014
[41]POPE C N. Organophosphorus pesticides: do they all have the same mechanism of toxicit?[J]. J Toxicol Environ Health B Crit Rev, 1999, 2(2): 161-181. doi: 10.1080/109374099281205
[42]BONNIN A, GOEDEN N, CHEN K, et al. A transient placental source of serotonin for the fetal forebrain[J]. Nature, 2011, 472(7343): 347-350. doi: 10.1038/nature09972
[43]ROCK K D, ST ARMOUR G, HORMAN B, et al. Effects of prenatal exposure to a mixture of organophosphate flame retardants on placental gene expression and serotonergic innervation in the fetal rat brain[J]. Toxicol Sci, 2020, 176(1): 203-223. doi: 10.1093/toxsci/kfaa046
[44]LU X, HONG J, ZHANG J, et al. Triphenyl phosphate disrupts placental tryptophan metabolism by activating MAOA/ROS/NFκB[J]. Sci Total Environ, 2023, 904: 166688. doi: 10.1016/j.scitotenv.2023.166688
[45]HONG J, LU X, WANG J, et al. Triphenyl phosphate disturbs placental tryptophan metabolism and induces neurobehavior abnormal in male offspring[J]. Ecotoxicol Environ Saf, 2022, 243: 113978. doi: 10.1016/j.ecoenv.2022.113978
[46]GOEDEN N, VELASQUEZ J, ARNOLD K A, et al. Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain[J]. J Neurosci, 2016, 36(22): 6041-6049. doi: 10.1523/JNEUROSCI.2534-15.2016
[47]BONNIN A, TORII M, WANG L, et al. Serotonin modulates the response of embryonic thalamocortical axons to netrin-1[J]. Nat Neurosci, 2007, 10(5): 588-597. doi: 10.1038/nn1896
[48]YANG C J, TAN H P, DU Y J. The developmental disruptions of serotonin signaling may involved in autism during early brain development[J]. Neuroscience, 2014, 267: 1-10. doi: 10.1016/j.neuroscience.2014.02.021
[49]NEWELL A J, KAPPS V A, CAI Y, et al. Maternal organophosphate flame retardant exposure alters the developing mesencephalic dopamine system in fetal rat[J]. Toxicol Sci, 2023, 191(2): 357-373. doi: 10.1093/toxsci/kfac137
[50]OLIVERI A N, ORTIZ E, LEVIN E D. Developmental exposure to an organophosphate flame retardant alters later behavioral responses to dopamine antagonism in zebrafish larvae[J]. Neurotoxicol Teratol, 2018, 67: 25-30. doi: 10.1016/j.ntt.2018.03.002
[51]WANG Q, LAM J C W, MAN Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1, 3-dichloro 2-propyl phosphate (TDCPP) to zebrafish[J]. Aquat Toxicol, 2015, 158: 108-115. doi: 10.1016/j.aquatox.2014.11.001
[52]石佳, 黄威权, 张崇理. 人早期胎盘绒毛中去甲肾上腺素和多巴胺的免疫组织化学研究[J]. 科学通报, 1994, 39(8): 750-752.
[53]MARINELLO W P, GILLERA S E A, HAN Y, et al. Gestational exposure to FireMaster® 550 (FM 550) disrupts the placenta-brain axis in a socially monogamous rodent species, the prairie vole (Microtus ochrogaster)[J]. Mol Cell Endocrinol, 2023, 576: 112041. doi: 10.1016/j.mce.2023.112041
[54]REHN A E, VAN DEN BUUSE M, COPOLOV D, et al. An animal model of chronic placental insufficiency: relevance to neurodevelopmental disorders including schizophrenia[J]. Neuroscience, 2004, 129(2): 381-391. doi: 10.1016/j.neuroscience.2004.07.047
[55]ZECEVIC N, VERNEY C. Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervation of the cerebral cortex[J]. J Comp Neurol, 1995, 351(4): 509-535. doi: 10.1002/cne.903510404
[56]MONEY K M, STANWOOD G D. Developmental origins of brain disorders: roles for dopamine[J]. Front Cell Neurosci, 2013, 7: 260.
[57]BONVICINI C, FARAONE S V, SCASSELLATI C. Attention-deficit hyperactivity disorder in adults: a systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies[J]. Mol Psychiatry, 2016, 21(7): 872-884. doi: 10.1038/mp.2016.74
[58]PRICE R B, DUMAN R. Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model[J]. Mol Psychiatry, 2020, 25(3): 530-543. doi: 10.1038/s41380-019-0615-x
[59]YANG W, ZHAO F, FANG Y, et al. 1H-nuclear magnetic resonance metabolomics revealing the intrinsic relationships between neurochemical alterations and neurobehavioral and neuropathological abnormalities in rats exposed to tris(2-chloroethyl)phosphate[J]. Chemosphere, 2018, 200: 649-659. doi: 10.1016/j.chemosphere.2018.02.056
[60]LIU X, ZHAO X, WANG Y, et al. Triphenyl phosphate permeates the blood brain barrier and induces neurotoxicity in mouse brain[J]. Chemosphere, 2020, 252: 126470. doi: 10.1016/j.chemosphere.2020.126470
[61]HAUSHERR V, VAN THRIEL C, KRUG A, et al. Impairment of glutamate signaling in mouse central nervous system neurons in vitro by tri-ortho-cresyl phosphate at noncytotoxic concentrations[J]. Toxicol Sci, 2014, 142(1): 274-284. doi: 10.1093/toxsci/kfu174
[62]WU X, XIE C, ZHANG Y, et al. Glutamate-glutamine cycle and exchange in the placenta-fetus unit during late pregnancy[J]. Amino Acids, 2015, 47(1): 45-53. doi: 10.1007/s00726-014-1861-5
[63]BLACHIER F, BOUTRY C, BOS C, et al. Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines[J]. Am J Clin Nutr, 2009, 90(3): 814S-821S. doi: 10.3945/ajcn.2009.27462S
[64]JAVITT D C, SCHOEPP D, KALIVAS P W, et al. Translating glutamate: from pathophysiology to treatment[J]. Sci Transl Med, 2011, 3(102): 102mr2.
[65]YU T, ZHAO Y, SHI W, et al. Effects of maternal oral administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain[J]. Brain Res, 1997, 747(2): 195-206. doi: 10.1016/S0006-8993(96)01181-X
[66]SOLTANI Z, SHARIATPANAHI M, AGHSAMI M, et al. Investigating the effect of exposure to monosodium gluamate during pregnancy on development of autism in male rat offspring[J]. Food Chem Toxicol, 2024, 185: 114464. doi: 10.1016/j.fct.2024.114464