据MS官网显示,来自香港中文大学(深圳)的陈睿、西南交通大学的陈若然、南方科技大学的王宇、香港科技大学的王譞,合作的论文“Optimal Control of Service Systems with Heterogeneous Servers and Priority Customers”在国际管理学顶刊《Management Science》线上正式发表。
Title: Optimal Control of Service Systems with Heterogeneous Servers and Priority Customers
具有异构服务器和优先级客户的服务系统最优控制
陈睿(David Chen)
香港中文大学(深圳)
陈若然
西南交通大学
王宇(Rowan Wang)
南方科技大学
王譞
香港科技大学
We study service systems with parallel servers and random customer arrivals and focus on the waiting cost of customers. Using a Markov decision process (MDP) modeling approach, we analytically characterize the structures of the optimal dynamic server assignment policies for two important systems, one consisting of multiple homogeneous servers and two classes of customers and the other consisting of two heterogeneous servers and multiple classes of customers. Based on the obtained results, we propose a threshold-type heuristic policy for the generalized system consisting of multiple heterogeneous servers and multiple classes of customers. To design such a heuristic policy, we first develop techniques for the performance evaluation of general threshold-type policies with any given threshold values. We then construct a path to search for the optimal threshold values. We compare the performance of the best threshold-type heuristic policy with that of the optimal policy and show that our proposed heuristic policy is computationally efficient yet generates great performance. To derive additional managerial insights, we compare the system under our threshold-type dynamic server assignment policy with other commonly seen and simple systems, such as the dedicated system and the work-conserving flexible priority system. The clear performance advantage observed from extensive numerical experiments demonstrates the importance and usefulness of dynamic server assignment control for systems serving multiple classes of customer arrivals. Finally, we extend our analysis to incorporate customer-dependent service rates and sojourn-time minimization performance metrics.
我们研究了具有并行服务器和随机客户到达的服务系统,并重点关注客户的等待成本。采用马尔可夫决策过程(MDP)建模方法,我们分析了两个重要系统的最优动态服务器分配策略的结构:一个由多个同质服务器和两类客户组成,另一个由两个异构服务器和多类客户组成。基于所得结果,我们为由多个异构服务器和多类客户组成的泛化系统提出了一种阈值型启发式策略。为了设计这样的启发式策略,我们首先开发了评估任何给定阈值的一般阈值型策略性能的技术。然后,我们构建了一条寻找最优阈值的路径。我们将最佳阈值型启发式策略的性能与最优策略的性能进行比较,表明我们提出的启发式策略在计算效率上是高效的,同时能够产生出色的性能。为了获得额外的管理洞察力,我们将我们的阈值型动态服务器分配策略下的系统与其他常见和简单的系统进行比较,例如专用系统和工作保守的灵活优先级系统。从广泛的数值实验中观察到的明显性能优势证明了动态服务器分配控制在服务多类客户到达的系统中的重要性和实用性。最后,我们扩展了我们的分析,以纳入客户依赖的服务率和逗留时间最小化的性能指标。
Tips:“社科人工智能与人工智能经济学” 冬季学术研讨会即将举办,欢迎对人工智能经济学方法及其应用感兴趣的学者和学生报名!
疯狂暗示↓↓↓↓↓↓↓↓↓↓↓