论文速递 | ​​基于广义概率密度演化方法的深层水工隧道抗震性能评估中多源不确定性影响研究

文摘   2024-08-21 19:00   德国  
Understanding the multi-source uncertainties effect on the seismic performance assessment of deeply hydraulic tunnels based on the generalized PDEM

基于广义概率密度演化方法的深层水工隧道抗震性能评估中多源不确定性影响研究

引用格式 | Cited by
Sun BB, Deng MJ, Xu J, Xu Y, Cui HB, 2024. Understanding the multi-source uncertainties effect on the seismic performance assessment of deeply hydraulic tunnels based on the generalized PDEMProbabilistic Engineering Mechanics, 76: 103619.
DOI: 10.1016/j.probengmech.2024.103619

摘要 | Abstract

抗震性能评估方法的关键是合理考虑地震动 (seismic ground motion, SGM) 的随机性和材料属性的不确定性。此外,地震波入射角可能受地形和地质因素影响,导致不确定性和随机性。这种入射角的变化可能导致意想不到的结构损伤。然而,目前地下结构的地震设计规范通常假设在地下工程中使用垂直或水平地震输入方法。从不确定性的角度来看,非平稳地震动、地震入射角和材料参数的多源不确定性在水工隧道 (hydraulic tunnel, HT) 抗震性能评估中的应用,仍是当前抗震设计和性能评估的一个挑战。为解决这一挑战,本文引入了广义 F 偏差方法、广义概率密度演化方法 (probability density evolution method, PDEM) 和等价极值事件,进行随机动力学分析,并给出考虑多源不确定性的水工隧道易损性曲线。结果表明,通过多源不确定性得到的水工隧道损伤概率与分析单一不确定性和两类不确定性时存在显著差异。此外,可得出结论,在不同地震强度水平下,相比于单一不确定性和两类不确定性,多源不确定性会导致水工隧道更高的抗震需求。鉴于此,强烈建议在水工隧道抗震设计和性能评估中考虑相关因素,例如入射角、地震波和材料参数的随机
关键词多源不确定性, 随机地震动, 斜入射压缩波, 水工隧道, 概率密度演化方法, 易损性曲线
One crucial element of a seismic performance evaluation approach is to appropriately account for the stochastic characteristics of SGMs and the uncertainty associated with material properties. Furthermore, the incidence angle of seismic waves may be influenced by topographic and geological factors, leading to uncertainty and randomness. This variability in incident angles has the potential to cause unforeseen structural damage. However, the current seismic design code of underground structures has commonly assumed the vertical or horizontal seismic input method in underground engineering. From the uncertain point of view, the multi-source uncertainties that incorporate the nonstationary SMGs, seismic input angles, and material parameters utilized to conduct the seismic performance assessment of HTs remain a challenge in current seismic design and performance evaluation. To overcome this challenge, the Generalized F-discrepancy method, the generalized PDEM, and the equivalent extreme-value event are introduced to conduct stochastic dynamic analysis and develop the appropriate fragility curves of HTs considering the multi-source uncertainties. The results demonstrate that the probability of damage of the HT obtained by multi-source uncertainties is significantly different in analyzing the single uncertain and two uncertainties. Moreover, it can be concluded that the multi-source uncertainties can cause more seismic demand than the single uncertain and two uncertainties under different earthquake intensity levels for the HT. In light of this, it is strongly suggested that seismic design and performance assessment of HTs take into account the relevant aspects, such as the input angles, the random features of seismic waves, and the material parameters.
KeywordsMulti-source uncertainties; Stochastic ground motions; Oblique P waves; Hydraulic tunnels; Probability density evolution method; Fragility curves

创新点 | Highlights

  • 采用多源不确定性进行随机动力分析
  • 采用概率密度演化方法进行性能评估
  • 为深层水工隧道给出易损性曲线
  • 比较了不同工况的差异

  • The multi-source uncertainties are adopted for stochastic dynamic analysis
  • The probability density evolution method is used for performance evaluation
  • The fragility curves are developed to the deeply hydraulic tunnel
  • The difference between the different cases is compared

图 1: 随机动力分析与抗震性能评估的流程图

Fig. 1. Flowchart of the stochastic dynamic analysis and seismic performance assessment

图 2: 样本、目标与蒙特卡罗方法的均值与标准差对比

Fig. 2. Comparison of the mean and standard deviation among the samples, target, and MC method

图 3: 截断边界处的入射压缩波

Fig. 3. Incident P waves view at the truncated boundary

图 4: 考虑流体—结构—围岩体相互作用系统的 2 维有限元模型

Fig. 4. 2-D FE model considering fluid-structure-surrounding rock mass interaction system

图 5: 不同工况产生的水工隧道漂移均值对比

Fig. 5. Comparison of the mean value of the drift ratio of an HT generated by different cases

图 6: 10 s 与 15 s 时三类工况下水工隧道漂移的概率密度函数

Fig. 6. PDF of the drift ratio of an HT for the three cases at 10 s and 15 s

图 7: 三类工况下水工隧道漂移比的峰值

Fig. 7. Peak value of the drift ratio of an HT for the three cases

图 8: 三类不同工况下水工隧道的损伤概率对比

Fig. 8. Comparison of the probability of damage of an HT under three different cases

图 9: 典型峰值地震动加速度水平下水工隧道的损伤概率对比

Fig. 9. Comparison of the probability of damage of an HT at typical PGA levels

作者信息 | Authors

孙奔博 Ben-Bo Sun通讯作者 (Corresp.) 
郑州大学 (Zhengzhou University) 水利与交通学院

Email: sunbenbo@zzu.edu.cn

邓铭江 Ming-Jiang Deng 

中国工程院院士
疆维吾尔自治区科学技术协会 (Xinjiang Association for Science & Technology
)

许佳 Jia Xu 

黄河勘测规划设计研究院 (Yellow River Engineering Consulting Co., Ltd.)

徐燕 Yan Xu 

疆维吾尔自治区科学技术协会 (Xinjiang Association for Science & Technology)

崔海波 Hai-Bo Cui 

中国电建集团北京勘测设计研究院 (Power China Beijing Engineering Co., Ltd.)



律梦泽 M.Z. Lyu | 编辑 (Ed) 

P.D. Spanos | 审校 (Rev)

陈建兵 J.B. Chen | 审校 (Rev)

彭勇波 Y.B. Peng | 审校 (Rev)

Probab Eng Mech
国际学术期刊 Probabilistic Engineering Mechanics 创立于 1985 年,SCI 收录,JCR Q1,现任主编是美国工程院院士、中国科学院外籍院士、莱斯大学 Pol D. Spanos 教授。
 最新文章