大家好,我是李启方!今天来聊聊生猪养殖数据分析,带大家一起实操下!
老李最近看到一个有趣的农牧行业案例,这个案例围绕着“生猪从配种到销售的生命周期,将追踪结果过程化,呈现各个生产阶段的表现情况”,同样,作品采用了企业脱敏数据,其业务意义很强,分析内容丰富、分析思路清晰、分析方法多样。非常值得大家学习!
正文开始前,老李先给大家推荐一个《帆软行业场景建设白皮书》,总结了覆盖制造、金融、国资央企、消费零售、物流交通、电力水务、建筑地产、医药健康、医疗卫生、高校教育等10大行业、24个细分行业的解决方案。旨在为各行各业的IT、数据从业者提供在其所属的业务场景下,现成的解决方案和蓝图参考,从而帮助他们快速落地数据分析和展示平台。扫描下方二维码即可下载完整PDF!
业务背景
中国是全球最大的猪肉生产和消费市场,2022年我国猪肉产量5541万吨,约合7亿头生猪,市场规模超万亿元。市场庞大、刚需稳定、政府扶持,而生猪因猪周期的独特性,成为中国周期长风险最高的养殖品种之一。进入23年以来,行业供给严重过剩,猪价连续数月跌破成本线,猪粮比多次破5:1,年内国家已启动第二次收储,猪价触底推动一轮又一轮去产能化。保现金流、保产能、平稳穿越猪周期底部的根本办法是狠抓成本,在现金流为正的前提下,通过均衡满负荷生产稀释固定资产和生物资产折旧,用满负荷出栏量换来更低完全成本和更大变现可能。
传统养猪企业如何精益运营管好养猪生命周期,如何面面俱到狠抠成本,如何灵活敏捷抓住市场机遇是非常大的挑战。相较于金融、制药、地产、零售等数据应用早、相对成熟的行业来说,农牧行业在数据应用建设等方面建设不足,尚处于处于数字化转型数据资产化和资产应用化的起步阶段:
人为利用Excel对需向上层层汇报的报表数据汇总、加工,整合,所存在的数据链路过长、时效性差、数据维度口径不一、数据准确性难以保证、安全性低等弊端使得管理层对企业运营概况难以随时随地精准把握,缺乏掌控感;也缺乏及时了解一线实情的工具,对于一线的技术和业务指导不能有效的日常追踪和跟进;
在日常运营管理中,周度、月度复盘皆采用历史结果数据,无法及时了解现阶段问题。大大延长了“发现问题——分析问题——给出方案——落地追踪”的生产管理改进流程;
数据量大报表多,管理层难以实时掌握全局和动态,对于过程管理和短期未来的预判,基本上依赖管理层和操作人员过去的管理经验和个人能力;
生产成绩数据颗粒度粗,难以挂钩人员考核,不能有效激励员工,存在吃大锅饭现象。
内外部环境的压力,对养猪企业提出了更高的要求:从粗放式发展到向管理要效益。养猪是民生事业,关乎老百姓的饭碗,养猪企业在周期起伏之中修炼好内功,其中出栏目标达成追踪与管理的数据可视化是重要的一项关键任务。
需求痛点
1.数据滞后、未被有效利用且数据标准不统一
养猪是传统行业,数字化进程落后。公司内生产系统、财务系统、采购系统、人力资源系统、客户管理系统、OA审批流程等等独立运营,尚未互相打通,形成诸多信息孤岛,日常数据分析依赖人工excel重复的进行数据关联和手工汇总分析,人工的计算强度和效率在一定程度上限制了数据分析的广度和深度,而人员素质的参差不齐,产生了标准不一致口径不统一的数据分析结果在公司各个层级流转。管理层日常不仅面临数据和信息的滞后,还需要与各层级反复核实数据和信息以免决策偏差,管理决策滞后。
解决方案:搭建自动化管理看板
建立公司指标体系,统一数据标准,通过BI搭建可视化管理驾驶舱看板,自动更新和计算,动态反馈公司当前运营健康度,各层级依据数据权限查看各项指标,用数据反馈经营、指导经营,形成闭环。指标体系量化的反馈配种、分娩、断奶、育肥、销售各个业务工段当前及预计未来的运营结果,包括且不限于满负荷率、分娩率、窝均活仔、断奶前成活率、成活率、正品率、存栏量、出栏量等等关键指标。
2.生产周期长过程问题反馈不直观,全链数据未打通,难以实时掌控全局运营
猪的生长周期长,自配种至分娩需要114天,自分娩至断奶需要25日龄。自断奶到育肥上市需要155,换句话说,每一头出栏的肥猪都是10个月兢兢业业、毫不松懈的“生产制造”的成果。对于员工而言,10个月或滋生惰性和侥幸心理,今天工作做不好没关系,等领导发现是几个月之后的事情,领导早不记得今天发生了什么,也不会追究我的责任。对于管理层而言,低头养猪过程中还需要抬头看天,10个月时间外部因素或发生巨大变化,例如猪价近高远低时是否可以考虑销售断奶仔猪,例如疫情高发季节是否减产,例如育肥场与种猪场错配导致空栏时是否外购仔猪,等等。如果不能全局了解经营现状并及时根据内外部环境的变化调整运营策略,在猪价波动中会被动挨打,甚至倾家荡产。对于猪自身的属性而言,“家财万贯,带毛的不算”,养殖过程中存在大量的不确定性,例如饲料中某一项原料的更换,或许猪越长越好,或许导致母猪便秘、脱肛脱宫、流产、死亡等。活物是敏感且不可直观预测的。
解决方案:预测与全局
对于员工、管理层、甚至猪而言,一个能滚动反馈生产经营结果变化,通过调整关键指标等可推演所有可能的经营结果的预测出栏模型是非常必要的。员工实时收到工作结果的数据化反馈:我的工作非常重要,我的工作让公司增加出栏xxx头猪,营收增加¥xxxxxx。同时,模型帮助员工精益运营,增加收益。通过量化的工作结果,员工可反复修正工作动作,固化最优SOP,达成工作业绩,赢得考核激励。
预测出栏模型完整的展示/预测一年之内当下、过去、和相对可靠的未来的运营结果,通过自动计算,向管理层实时展示物理空间和时间空间的运营全局。管理层通过调整生产参数假设、重新分配资源等,可全盘推演各类情况下,公司运营的整体变化。
科学的战略规划,精准运营,识别机会,参与市场博弈。在实际生产中,生产参数的变化带来的出栏量的变化是一个复杂的系统,非线性变化,通过一个模拟生产场景滚动反馈生产经营结果变化的出栏预测模型,根据结果,追溯原因,沉淀经验,亡羊补牢,同时根据当前的问题,推演最终的结果,启用备选方案,确保运营目标达成,对于一家养猪企业而言是最难且最重要的。
3.人员评价靠主观,粗放且不公平,不精准,不及时
猪是农林牧渔行业中最金贵、最脆弱、周期偏长的一个物种,普通一次进场从开始进到见到活猪,可能需要跨过九九八十一道门,洗至少2次澡,核酸采样至少2次,从内到外从上到下全部更衣至少3次,时间超过24小时。一个布局全国的养猪企业如何在日常运营中在诸多遍布全国的猪场中识别优秀管理者、员工,快速调整拙劣平庸的人员,是非常大的挑战。
解决方案:量化评价
在全局出栏预测模型的基础上,细化颗粒度到分子公司维度,分子公司间PK出栏预测达成率、各工段达成率、关键指标等等。例如,2月份A公司出栏预测达成率85%,B公司出栏预测达成率90%,A公司配怀阶段出栏预测达成率98%,B公司配怀阶段出栏预测达成率95%,则A公司在整体经营管理中差于B公司,但A公司配怀阶段操作优于B公司。
搭建一个滚动反映运营全局的可视化平台,在展示当下关键指标、数据的同时,预测模拟全年的运营结果,用预算做准绳,实现对生猪出栏年度目标达成的数据化追踪。
围绕生猪从配种到销售的生命周期,将追踪结果过程化,呈现各个生产阶段的表现情况。用数据来为预算追踪说话,同时定期检查追踪结果,及时采取措施处理异常情况,确保出栏目标能够顺利达成。
全局概览:出栏预测达成 vs 预算,关键指标 vs 预期目标;
追踪各层级组织各时间点的出栏任务完成情况;
追踪并提醒组织负责人各种异常情况,及时处理;
监督及检查各层级组织出栏计划的执行进度;
通过数据持续地给到各层级组织管理人员压力;
及早发现管理不足/问题点,避免问题发酵。并总结出优秀组织的先进管理经验;
为次年出栏计划的科学制定提供参考依据;
实现报表自动化,释放基层日常重复的劳动力。
指标说明
数据来源
按可直接查询利用的ADS表进行表结构构建,由Excel随机函数生成脱敏数据。与生产数据无任何关系。
组织架构:参考了零售行业公开数据类书籍常用的组织划分。大区使用了常见的地理分布划分,如浙闽大区、苏皖大区,公司则由英文字母+数字进行编号;
行业词汇:使用了行业通用名词,非特定公司所有;
相关计算指标:使用的是行业通用的计算指标。其中涉及到的预测公式,亦未采用专业的算法模型,仅为常见的公式逆推。
数据表清单
数据处理
1.生产环节差异瀑布图(核心处理步骤)
分组汇总
列转行
排序
累计值准备
Y值准备:
Y值轴
2.哺乳各阶段定基转化分析(核心步骤)
分组汇总
列转行
第一节点头数
每一节头数
定基转化率
3.模型视图
报告主体
1.整体总览
2023年度达成率概况:展示集团全年目标、预测达成值、预测差异、当前累计出栏、年度出栏达成率、各大区年度预测达成率、各省市年度预测达成率钻取地图、月实际/预测达成率、月累计实际/预测达成率;
异常预警:以鲜明的红底指标卡,进行提示。并通过跳转功能,支持跳转查看异常公司明细;
核心指标:关键的四项运营指标(分娩率、窝均活仔数、断奶前成活率、育肥成活率),并与行业领头企业进行对标,发现差距并争取赶上超过;
偏差定位:找到导致目标发生主要偏差的生产环节,并进行追踪;
2.过程追踪
根据数据分析的公式法(年度出栏预测值=配怀预测+哺乳预测+育肥预测+已销售数),将总目标拆解成生产的四个环节的目标。在过程中,除了跟进各环节的目标达成情况,也通过公式的进一步拆解,跟进生产运作过程的运营指标。
配怀阶段过程追踪:拆分成了总目标的配怀阶段预测出栏达成,以及生产过程中的配种工作进度、怀孕母猪存栏进度、配种妊娠率、内部妊娠率对比排名等;
哺乳(含分娩)阶段过程追踪:拆分成了总目标的哺乳阶段预测出栏达成,以及生产过程中的分娩母猪出栏、活仔数、哺乳仔猪存栏、分娩率、断奶前成活率、哺乳各阶段定基转化、哺乳阶段各日龄存栏、内部窝均活仔对比排名等;
育肥阶段过程追踪:拆分成了总目标的育肥阶段预测出栏达成,以及生产过程中的各周龄肥猪存栏、累计死淘率、死淘原因分析等;
已销售阶段过程追踪:拆分成了总目标的已销售阶段实际出栏达成,以及过程中的周达成、大区达成、关键销售指标(平均饲养天数、销售料肉比、日增重)、销售正品率等;
3.分析层次
描述性分析:描述各组织生产运营状况,透明化核心运营概况;
诊断性分析:用出栏达成偏差瀑布图、哺乳各阶段转化分析等实现对异常环节、异常运营的定位与诊断;
预测性分析:用年度出栏目标达成预测,及配怀、哺乳、育肥阶段达成预测,实现对生猪出栏年度目标达成的数据化追踪;
指导性分析:结合前三类分析:为后续生产运营改善工作提供改善方向与策略的参考,使组织能够顺利实现既定出栏目标。
辅助性功能模块
在日常报表宣贯采集上来的报表目标用户使用意见反馈上,比较多的用户会反馈“数据团队做的报表涉及面很宽,也很好看,蛮有价值。但对我们来说,特别是新进员工,看到这么多报告,报告里又怎么多图表,会有一种眼花缭乱,不知从何用起的烦恼”。采集上的用户问题有“这份报告如何应用”,“图表里的这个指标,你们是从哪个业务系统来的、具体是怎么计算的”、“数据是最新的,都是怎么更新的”以及“图表联动、组件放大、导出”等一列问题。“想其所想,感其所感,帮其所需”。根据“使用户看得见、看得懂、用得好数据的报告,才是一份优秀的数据报告”的数据开发理念,在传统的报告主页新增了“报告简介”、“指标字典”、“咨询通道”这三个注重新用户使用友好性的功能模块,降低用户上手成本,提升用户使用体验。
1.报告简介:适用对象、分析思路、应用价值、内容概览
帮助报告目标新用户快速掌握报告的分析思路、内容、用途、价值。
2.指标字典:业务板块、指标含义、取数口径
提供报告展示指标的业务口径、取数逻辑。
3.咨询通道:数据来源、数据更新、查看技巧、运营团队
前四项是日常报告查看用户、会议领上导常问的咨询内容。使用户在使用本报告时,知其源头,知至时效,知其使用。最后一项,则是用户需要深入交流报告承接团队的的联系方式。
总体分析思路
分析方法
(1)公式法:年度预测达成头数=配怀预测+哺乳预测+育肥预测+已销售数,通过公式法,逐渐拆解出生产环节相关目标指标及运营指标。
(2)波士顿矩阵:各个大区/公司(此处设置了钻取目录,可进行下钻或旋转)在分娩率与断奶前成活率象限图的分布,其中超过标准分娩率和断奶前成活率的象限为优秀区域,低于其中之一标准的象限为橙色预警区域,均低于标准的象限为红色预警区域。快速分辩出优秀、预警、异常的组织。
(3)TopN:找到某个生产节点表现优异与不佳的组织,例如窝均活仔Top10和Last10;并且可以识别出对应的极优值,通过极值追踪,积攒优秀经验,并不断寻求相关指标的突破提升。
(4)对比分析(出栏达成追踪的标准):对比找出差距、对比产生压力、对比发现问题。
其中,预测达成率的正常、预警、异常标准:
正常标准:90%~110%
预警标准:80%~90%、110%~120%
异常标准:0%~80%、120%以上
(5)转化分析模型:看新生猪至各哺乳日龄段存栏留存情况直至预计断奶的定基转化情况,找寻出异常环节或做的不好的环节,加以改进。
整体呈现逻辑
整体概览——>异常组织、环节定位及核心运营指标监控——>过程追踪(配怀、哺乳、育肥、销售)。详见思维导图:
报告页布局设计
最终仪表结果展示
可以上下滚动的图片
你点的每一个在看,都汇聚成数据之光!