Deng, Y., Yu, R., Grabe, V. et al. Bacteria modulate microalgal aging physiology through the induction of extracellular vesicle production to remove harmful metabolites. Nat Microbiol, 2356–2368 (2024). 摘要:
水生系统中微藻的繁荣与衰退模式对全球生物地球化学循环有着巨大的贡献。藻类水华的衰退主要是由于营养限制,导致细胞死亡、细胞分裂停止以及存活细胞的老化。摄入营养可以重新启动增殖,但其中涉及的过程尚不完全清楚。在此研究中,我们描述了形成水华的辐射圆筛藻(Coscinodiscus radiatus)在营养涌入后如何从饥饿状态中恢复。复苏是通过胞外囊泡介导的,这些囊泡将活性氧物质、氧脂素和其他有害代谢物排出老化细胞,从而使其重新能够增殖。通过向老化细胞施加营养脉冲并进行代谢组学监测,我们发现调控途径集中在C. radiatus的蛋氨酸循环上。共培养实验表明,细菌通过化学信号调节衰老过程,并触发囊泡的产生。这项工作为复杂微生物群落中的细胞衰老和复苏开辟了新的视角。
研究采用辐射圆筛藻及其相关细菌,探讨微藻衰老和复苏过程。培养条件下的年轻细胞随时间推移进入老化阶段,硅酸盐耗尽导致细胞分裂停止,随后大量出现濒死和死亡细胞,并伴有胞外囊泡(EV)的形成。这些囊泡中积累了大活性氧(ROS),表明细胞通过囊泡清除ROS以减缓损伤。在研究中,细菌对藻类的衰老和复苏有显著影响。共培养实验发现,两种细菌白色海微生态室菌Mameliella sp. CS4和Marinobacter sp. CS1对藻类有不同的影响:CS4促进年轻藻类的生长,而CS1则减缓其生长并加剧老化藻类的衰老,增加EV生成。此外,CS1处理显著提高了细胞及其囊泡中ROS的浓度。代谢组学分析显示,细菌调节藻类衰老和复苏涉及次黄嘌呤和牛磺酸等代谢物。次黄嘌呤的上调与CS1诱导的老化相关,牛磺酸则可能参与ROS调节。通过外源次黄嘌呤处理可以恢复老化细胞的生长和囊泡生成,进一步确认次黄嘌呤在调节藻类衰老中的作用。这些发现揭示了藻类在细菌存在下的衰老机制和调节策略,为了解微藻生态系统中的细胞间相互作用提供了新视角。文中图表:
Fig. 6: A model graph describing how bacteria modulate aging physiology in microalgae via the methionine cycle and induced EV production. Top: diagram indicating that physiological aging of the diatom occurs during late stationary phase according to the growth curve. Old cells become more pigmented and release EVs during the late growth stage when mortality is already high. Upon influx of nutrients, EV production and reduction of pigmentation occur with cell proliferation. Bottom: diagram showing how old diatom cells rejuvenate under the production of EVs that shuttle out detrimental metabolites. The process is regulated by the methionine cycle and related metabolites. The influence of the bacteria CS1 and CS4 on the processes is represented by arrows that refer to suppression and promotion, respectively.