第一作者:Kai Yang
通讯作者:唐首锋 教授
通讯单位:燕山大学环化学院
DOI:10.1016/j.seppur.2022.122500
在这项工作中,我们首次报道了天然黄铜矿(CuFeS2)对PAA的有效活化,以消除甲硝唑(MTZ)。研究了PAA浓度、CuFeS2用量、初始pH值、MTZ初始浓度和水基对MTZ去污的影响。在460μM PAA、4g L-1 CuFeS2和初始pH值为3的条件下,30分钟后实现了MTZ的有效降解(83.92%)。在五个循环后,CuFeS2表现出令人满意的可回收性。根据清除和探针测试以及电子顺磁共振光谱仪,证明在协同系统中存在羟基自由基(自由基点OH)、有机自由基和轮渡离子物种,自由基点OH对MTZ的降解有主要贡献。正如预期的那样,表面结合的Cu(I)和Fe(II)被验证为主要的活性位点,而且表面结合的Cu(I)比表面结合的Fe(II)有更大的作用。CuFeS2的硫原子可以捕获质子形成硫空位,促进活性位点的暴露。更重要的是,CuFeS2中丰富的还原性硫物种可以提高活性位点的再生能力。此外,通过质谱法鉴定了MTZ的主要降解产物,并评估了其毒性。该研究提出了一种将天然黄铜矿和过乙酸结合起来进行水处理的新方法。
Fig. 1. (a) MTZ removal in diverse processes; (b) Corresponding reaction rate constants for MTZ decontamination during various systems. Conditions: [PAA]0 = 460 μM, [CuFeS2]0 = 4 g L−1, [H2O2]0 = 1278 μM, [MTZ]0 = 10 mg L−1, [pH]0 = 3. (c) Effect of adding H2O2 to the CuFeS2/PAA system on the MTZ removal. Conditions: [PAA]0 = 460 μM, [CuFeS2]0 = 4 g L−1, [H2O2]0 = 460–1380 μM, [MTZ]0 = 10 mg L−1, [pH]0 = 3.
Fig. 2. Influences of PAA concentration (a), CuFeS2 dose (b), initial pH (c), and initial MTZ concentration (d) on MTZ degradation in CuFeS2/PAA process. Conditions: [PAA]0 = 115–690 μM, [CuFeS2]0 = 1–4 g L−1, [MTZ]0 = 10–25 mg L−1, [pH]0 = 3–9. (e) Recyclability of CuFeS2. (f) Continuous catalytic test of CuFeS2. Conditions: add 460 μM of PAA at a time, [CuFeS2]0 = 4 g L−1, [MTZ]0 = 50 mg L−1, [pH]0 = 3.
Fig. 3. (a) Effect of different masking agents on MTZ elimination. Conditions: [TBA]0 = [MeOH]0 = 20 mM, [PAA]0 = 460 μM, [CuFeS2]0 = 4 g L−1, [MTZ]0 = 10 mg L−1, [pH]0 = 3. (b) Effect of p-BQ and L-His on MTZ degradation. Conditions: [p-BQ]0 = [L-His]0 = 50 μM, [PAA]0 = 460 μM, [CuFeS2]0 = 4 g L−1, [H2O2]0 = 750 μM, [MTZ]0 = 10 mg L−1, [pH]0 = 3. (c) NB and (d) NAP decompositions during CuFeS2/PAA. Conditions: [NB]0 = [NAP]0 = 10 mg L−1, [PAA]0 = 460 μM, [CuFeS2]0 = 4 g L−1, [MTZ]0 = 10 mg L−1, [pH]0 = 3. (e) PMSO and PMSO2 concentrations during CuFeS2/PAA. Conditions: [PMSO]0 = 736 μM, [PAA]0 = 460 μM, [CuFeS2]0 = 4 g L−1, [MTZ]0 = 10 mg L−1, [pH]0 = 3. (f) EPR spectra for CuFeS2/PAA system.
Fig. 4. (a) Effect of different chelates on MTZ decay. Conditions: [NCP]0 = [BPY]0 = 1 mM, [PAA]0 = 460 μM, [CuFeS2]0 = 4 g L−1, [MTZ]0 = 10 mg L−1, [pH]0 = 3. (b) EPR spectra of CuFeS2 before and after PAA activation. Influence of adding (c) Cu(II) and (d) Fe(III) on MTZ degradation. (e) Dissolved Cu(Ⅰ) in CuFeS2/PAA and CuFeS2/PAA/Cu(II). (f) Dissolved Fe(II) in CuFeS2/PAA and CuFeS2/PAA/Fe(III). Conditions: [Cu(Ⅰ)]0 = 3.6 mg L−1, [Fe(II)]0 = 1.8 mg L−1, [PAA]0 = 460 μM, [CuFeS2]0 = 4 g L−1, [MTZ]0 = 10 mg L−1, [pH]0 = 3.
Fig. 5. XPS spectra of CuFeS2: (a) full-range scan; (b-d) high-resolution spectrum of Cu 2p, Fe 2p, and S 2p.
Fig. 6. Feasible MTZ decomposition mechanism in CuFeS2/PAA process.
声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!
邮箱:Environ2022@163.com
欢迎大家将《水处理文献速递》加为星标
即时获取前沿学术成果
若有帮助,请点击“在看”分享!