第一作者:Sheng Xiong
通讯作者:邓垚成 教授/Daoxin Gong
通讯单位:湖南农业大学资源与环境学院
DOI:10.1016/j.cej.2022.138399
制备了一种具有光催化和压电协同效应的高活性催化剂AgI/Ag3PO4/BaTiO3,它可以在10分钟内,在较宽的pH值范围内100%去除Nitenpyram(NTP)。这种具有双Z型结构的压电光催化剂AgI/Ag3PO4/BaTiO3比它们的单一材料和二元复合材料显示出更高的NTP降解率。AgI/Ag3PO4/BaTiO3在NTP去除中的表观速率常数比第二种表现的催化剂高2.12倍。在淬火实验中,观察到h+和-O2-是NTP降解的主要活性物质,而且前者的贡献最大。双Z模式机制和内置电场都有利于电子-空穴对的分离,也有利于延长光生载流子的寿命。最后,效应因子实验证明,所制备的AgI/Ag3PO4/BaTiO3催化剂拥有稳定而高效的活性。这项工作为构建高效、稳定的压电光催化异质结催化剂提供了新的指导。
在此,我们选择了AgI、Ag3PO4和BaTiO3来构建一个双Z-scheme催化剂。据我们所知,Ag3PO4都具有优良的光催化性能和严重的光腐蚀。所以选择了AgI和BaTiO3来合成异质结进行保护。此外,AgI、Ag3PO4和BaTiO3的带状结构适合于理论上构建双Z-scheme。此外,BaTiO3具有很强的铁电性和压电性,引入它有利于压电光催化性能。因此,本工作报告了一种简单的一锅式制备AgI/Ag3PO4/BaTiO3复合材料的方法,由于双Z-scheme和压电性的协同作用,该材料具有超速降解NTP的功能。在最佳条件下,所制备的三元复合材料在10分钟内对NTP的去除率高达100%,AgI/Ag3PO4/BaTiO3的表观速率常数(kapp)是最佳二元材料Ag3PO4/BaTiO3的2.12倍。与其他光催化剂相比,这项工作表现出优异的NTP去除率。随后,材料表征验证了AgI/Ag3PO4/BaTiO3复合材料中电子-电洞分离和电荷转移性能的增强。这项工作为进一步发展压电光催化技术、促进光诱导的电子-空穴分离以及同时利用机械能和光能提供了一个有效的解决方案。
Fig. 1. a) XRD pattern of prepared materials. SEM images of b) AgI, c) Ag3PO4, d) BaTiO3 and e) AgI/Ag3PO4/BaTiO3 sample. f) TEM images of AgI/Ag3PO4/BaTiO3 sample at 100 nm and g) the lattice of AgI, BaTiO3, and Ag3PO4, h) Height sensor topography of AgI/Ag3PO4/BaTiO3, the insert is the height profile of the yellow line. i) HAADF-STEM image and corresponding EDS mapping profiles for Ag, I, O, P, Ba, and Ti.Fig. 2. a) PL spectra, b) transient photocurrent responses, c) EIS analysis, d) LSV curves and e) UV–vis diffuse reflectance spectra of all prepared materials. f) Mott-Schottky plots of AgI, Ag3PO4 and BaTiO3. UPS spectra for g) AgI, h) Ag3PO4 and i) BaTiO3.Fig. 3. NTP removal by prepared materials at different condition: a) piezocatalysis, b) photocatalysis and c) piezo-photocatalysis. d, e, f) The related kapp of prepared materials under different conditions. Comparison of g) NTP removal rate, and h) kapp of prepared materials under different conditions. i) Piezo-photocatalytic performance comparison different material (insert is the related kapp). [the molar ratio of AgI: Ag3PO4: BaTiO3 = 2: 3: 2,], [the molar ratio of AgI/Ag3PO4:BaTiO3 = 5: 2]. [NTP] = 5 mg/L, [Catalyst] = 10 mg, [pH] = 6.11.Fig. 4. a) The result of the quenching experiment on NTP degradation by AgI/Ag3PO4/BaTiO3 and b) related kapp. EPR detect of c) hydroxyl radicals, d) singlet oxygen, and e) superoxide radical. XPS high-resolution f) P 2p, g) I 3d, h) Ba 3d and i) Ti 2p spectra of Ag3PO4, AgI, BaTiO3 and AgI/Ag3PO4/BaTiO3 photocatalysts.Fig. 5. Ferroelectricity and piezoelectricity of AgI/Ag3PO4/BaTiO3 as studied with piezoresponse force microscopy. The 3D images of a) topography, b) amplitude, c) phase after the Gwyddion process. d) Piezoresponse amplitude-voltage, and e) phase-voltage curves. COMSOL simulation for the piezoelectric potential distribution in BaTiO3 nanocrystals: f) nanocube, g) nanostrip and h) nanosheet.Scheme 2. Possible mechanism of a) NTP removal by dual Z-scheme photocatalyst and b) the promotion effect by piezoelectricity of BaTiO3.Fig. 6. (a) The charge density difference (0.0015 e•Å-3) for BaTiO3/Ag3PO4. (b) Planar-averaged electron density difference ∆ρ(z) for BaTiO3/Ag3PO4. The yellow and cyan areas indicate electron accumulation and depletion, respectively.Fig. 7. Possible pathways proposed for NTP degradation by the piezo-photocatalysis of AgI/Ag3PO4/BaTiO3.
在此,本研究制备了具有高效、稳定压电催化活性的AgI/Ag3PO4/BaTiO3。在pH3-11范围内,它可以在10分钟内去除约100%的NTP,通过双Z-scheme和压电效应的协同作用,AgI/Ag3PO4/BaTiO3对NTP降解的催化性能得到显著提高。此外,这种三元材料具有很强的抗干扰能力,在TW和LW中的NTP降解率仅分别降低了4.3%和10.1%。此外,淬灭实验和EPR检测表明,h+是主要的活性物质。它来自于光诱导的双Z-scheme上的激发,并避免了与通过压电效应建立的内置电场所引起的电子重组。同时,双Z-scheme拥有两个传输通道,有利于延长光生载流子的寿命和分离光生电子-空穴对。这项工作提出了双Z-scheme和压电的协同作用,为构建高效稳定的催化剂提供了新的指导。
Sheng Xiong, Hao Zeng, Yaocheng Deng, Chengyang Feng, Rongdi Tang, Zhanpeng Zhou, Ling Li, Jiajia Wang, Daoxin Gong, Insights into the dual Z-scheme and piezoelectricity co-driven photocatalyst for ultra-speed degradation of nitenpyram, Chemical Engineering Journal, 2023, https://doi.org/10.1016/j.cej.2022.138399
声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!
邮箱:Environ2022@163.com
欢迎大家将《水处理文献速递》加为星标
即时获取前沿学术成果
若有帮助,请点击“在看”分享!
投稿、转载请扫描下方二维码联系小编吧