[1] 冯恩升. 基于材料热耗散行为的疲劳寿命预测方法研究[D]. 长沙: 湖南大学, 2021.
[2] CUI W C. A state-of-the-art review on fatigue life prediction methods for metal structures [J]. J Mar Sci Technol, 2002, 7(1): 43-56.
[3] FATEMI A, SHAMSAEI N. Multiaxial fatigue: An overview and some approximation models for life estimation [J]. Int J Fatigue, 2011, 33(8): 948-958.
[4] KAMAL M, RAHMAN M M. Advances in fatigue life modeling: A review [J]. Renew Sustain Energy Rev, 2018, 82: 940-949.
[5] 张哲峰, 刘睿, 张振军, 等. 金属材料疲劳性能预测统一模型探索 [J]. 金属学报, 2018, 54(11): 1693-1704.
[6] KASHYZADEH K R, FARRAHI G H, SHARIYAT M, et al. Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with a complicated geometry and multi-input random non-proportional 3D stress components [J]. Engineering Failure Analysis, 2018, 90: 534-553.
[7] 王延荣, 杨顺, 李宏新, 等. 总应变寿命方程中疲劳参数的确定和寿命预测[J]. 航空动力学报, 2018, 33(1): 1-14.
[8] YANG S, YANG L, WANG Y R. Determining the fatigue parameters in total strain life equation of a material based on monotonic tensile mechanical properties [J]. Eng Fract Mech, 2020, 226: 106866.
[9] GOLOS K, ELLYIN F. A total strain energy density theory for cumulative fatigue damage [J]. J Press Vessel Technol, 1988, 110(1): 36-41.
[10] LIAO D, ZHU S P, GAO J W, et al. Generalized strain energy density-based fatigue indicator parameter [J]. Int J Mech Sci, 2023, 254: 108427.
[11] UPADHYAYA Y S, SRIDHARA B K. Fatigue life prediction: a continuum damage mechanics and fracture mechanics approach [J]. Mater & Des, 2012, 35: 220-224.
[12] 吴圣川, 李存海, 张文, 等. 金属材料疲劳裂纹扩展机制及模型的研究进展[J]. 固体力学学报, 2019, 40(6): 489-538.
[13] SHUKLA S S, MURTHY K S R K. A study on the effect of different Paris constants in mixed mode (I/II) fatigue life prediction in Al 7075-T6 alloy [J]. Int J Fatigue, 2023, 176: 107895.
[14] ZHAN Z X, LI H, LAM K Y. Development of a novel fatigue damage model with AM effects for life prediction of commonlyused alloys in aerospace [J]. Int J Mech Sci, 2019, 155: 110-124.
[15] FATEMI A, YANG L. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials [J]. Int J Fatigue, 1998, 20(1): 9-34.
[16] 徐会会, 奥妮, 吴圣川, 等. 金属结构材料腐蚀疲劳寿命预测模型的研究进展[J]. 固体力学学报, 2023, 44(1): 1-33.
[17] 洪海铭, 詹志新, 王佳莹. 基于损伤力学的增材制造金属材料疲劳寿命预测[J]. 北京航空航天大学学报, 2022, 48(6): 950-956.
[18] DOWLING N E, CALHOUN C A, ARCARI A. Mean stress effects in stress-life fatigue and the Walker equation [J]. Fatigue Fract Eng Mat & Struct, 2009, 32(3): 163-179.
[19] KUJAWSKI D. A deviatoric version of the SWT parameter [J]. Int J Fatigue, 2014, 67: 95-102.
[20] INCE A. A mean stress correction model for tensile and compressive mean stress fatigue loadings [J]. Fatigue Fract Eng Mat Struct, 2017, 40(6): 939-948.
[21] CHAN K S, TIAN J W, YANG B, et al. Evolution of slip morphology and fatigue crack initiation in surface grains of Ni200 [J]. Metall and Mater Trans A, 2009, 40: 2545-2556.
[22] CHAN K S. Roles of microstructure in fatigue crack initiation [J]. Int J Fatigue, 2010, 32(9): 1428-1447.
[23] LI K S, GU L H, WANG X R, et al. A unified rule for high-cycle and low-cycle fatigue life prediction in multi-scale framework [J]. Int J Fatigue, 2023, 170: 107512.
[24] LI K S, WANG R Z, CHENG L Y, et al. Dislocation-based crystal plasticity modelling of a nickel-based superalloy under dwellfatigue: From life prediction to residual life assessment [J]. Int J Fatigue, 2022, 159: 106569.
[25] LI K S, WANG R Z, YUAN G J, et al. A crystal plasticity-based approach for creep-fatigue life prediction and damage evaluation in a nickel-based superalloy [J]. Int J Fatigue, 2021, 143: 106031.
[26] SANGID M D, MAIER H J, SEHITOGLU H. A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals [J]. Acta Materi, 2011, 59(1): 328-341.
[27] SANGID M D, MAIER H J, SEHITOGLU H. An energy-based microstructure model to account for fatigue scatter in polycrystals [J]. J Mech Phys Solids, 2011, 59(3): 595-609.
[28] YERATAPALLY S R, GLAVICIC M G, HARDY M, et al. Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation [J]. Acta Mater, 2016, 107: 152-167.
[29] BANDYOPADHYAY R, PRITHIVIRAJAN V, PERALTA A D, et al. Microstructure-sensitive critical plastic strain energy density criterion for fatigue life prediction across various loading regimes [J]. Proceedings of the Royal Society A, 2020, 476(2236): 20190766.
[30] HANSEN C K, WHELAN G F, HOCHHALTER J D. Interpretable machine learning for microstructure-dependent models of fatigue indicator parameters [J]. Int J Fatigue, 2024, 178: 108019.
[31] HU Y H, YANG J Z, CHEN L, et al. Planning-oriented autonomous driving [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 17-24, 2023. Vancouver, BC, Canada. IEEE, 2023: 17853-17862.
[32] CROOM B P, BERKSON M, MUELLER R K, et al. Deep learning prediction of stress fields in additively manufactured metals with intricate defect networks [J]. Mechanics of Materials, 2022, 165: 104191.
[33] 鞠天杰, 刘功申, 张倬胜, 等. 自然语言处理中的探针可解释方法综述[J]. 计算机学报, 2024, 47(4): 733-758.
[34] BAO H Y X, WU S C, WU Z K, et al. A machine-learning fatigue life prediction approach of additively manufactured metals [J]. Eng Fract Mech, 2021, 242: 107508.
[35] GAN L, ZHAO X, WU H, et al. Estimation of remaining fatigue life under two-step loading based on kernel-extreme learning machine [J]. Int J Fatigue, 2021, 148: 106190.
[36] CHEN J, LIU Y. Fatigue modeling using neural networks: A comprehensive review [J]. Fatigue Fract Eng Mat Struct, 2022, 45(4): 945-979.
[37] 胡雅楠, 余欢, 吴圣川, 等. 基于机器学习的增材制造金属力学性能预测研究进展与挑战[J]. 力学学报, 2024, 56(6): 1-24.
[38] PETCH J, DI S, NELSON W. Opening the black box: the promise and limitations of explainable machine learning in cardiology [J]. Canadian Journal of Cardiology, 2022, 38(2): 204-213.
[39] ZHONG X T, GALLAGHER B, LIU S E, et al. Explainable machine learning in materials science [J]. NPJ Computat Mater, 2022, 8(1): 204.
[40] CASTILLO E, CANTELI A F, CALVENTE M M. Automatic machine learning versus human knowledge-based models, property-based models and the fatigue problem [J]. Phil Trans R Soc A, 2024, 382(2264): 20220380.
[41] KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physicsinformed machine learning [J]. Nat Rev Phys, 2021, 3(6): 422-440.
[42] WANG H J, LI B, GONG J G, et al. Machine learning-based fatigue life prediction of metal materials: Perspectives of physicsinformed and data-driven hybrid methods [J]. Eng Fract Mech, 2023, 284: 109242.
[43] HAO W Q, TAN L, YANG X G, et al. A physics-informed machine learning approach for notch fatigue evaluation of alloys used in aerospace [J]. Int J Fatigue, 2023, 170: 107536.
[44] ZHU S P, WANG L Y, LUO C Q, et al. Physics-informed machine learning and its structural integrity applications: state of the art [J]. Phil Trans R Soc A, 2023, 381: 20220406.
[45] FAN J L, ZHU G, ZHU M L, et al. A data-physics integrated approach to life prediction in very high cycle fatigue regime [J]. Int J Fatigue, 2023, 176: 107917.
[46] JIANG L F, HU Y N, LIU Y X, et al. Physics-informed machine learning for low-cycle fatigue life prediction of 316 stainless steels [J]. Int J Fatigue, 2024, 182: 108187.
[47] YU H, HU Y N, KANG G Z, et al. High-cycle fatigue life prediction of L-PBF AlSi10Mg alloys: a domain knowledge-guided symbolic regression approach [J]. Phil Trans R Soc A, 2024, 382 (2264): 20220383.
[48] BERTOLINI M, MEZZOGORI D, NERONI M, et al. Machine Learning for industrial applications: A comprehensive literature review [J]. Expert Syst Appl, 2021, 175: 114820.
[49] DANG L W, HE X F, TANG D C, et al. A fatigue life prediction approach for laser-directed energy deposition titanium alloys by using support vector regression based on pore-induced failures [J]. Int J Fatigue, 2022, 159: 106748.
[50] SAI N J, RATHORE P, CHAUHAN A. Machine learning-based predictions of fatigue life for multi-principal element alloys [J]. Scr Mater, 2023, 226: 115214.
[51] LEI L, LI B, WANG H J, et al. High-temperature high-cycle fatigue performance and machine learning-based fatigue life prediction of additively manufactured Hastelloy X [J]. Int J Fatigue, 2024, 178: 108012.
[52] HORŇAS J, BĚHAL J, HOMOLA P, et al. Modelling fatigue life prediction of additively manufactured Ti-6Al-4V samples using machine learning approach [J]. Int J Fatigue, 2023, 169: 107483.
[53] NASHED M S, MOHAMED M S, SHADY O T, et al. Using probabilistic neural networks for modeling metal fatigue and random vibration in process pipework [J]. Fatigue Fract Eng Mat Struct, 2022, 45(4): 1227-1242.
[54] JIA Y F, FU R, LING C, et al. Fatigue life prediction based on a deep learning method for Ti-6Al-4V fabricated by laser powder bed fusion up to very-high-cycle fatigue regime [J]. Int J Fatigue, 2023, 172: 107645.
[55] OLIVEIRA G A B, CARDOSO R A, JÚNIOR R C S F, et al. A generalized ANN-multiaxial fatigue nonlocal approach to compute fretting fatigue life for aeronautical Al alloys [J]. Tribology International, 2023, 180: 108250.
[56] DEBNATH R, TAKAHASHI H. SVM training: second-order cone programming versus quadratic programming [C]//The 2006 IEEE International Joint Conference on Neural Network Proceedings.
July 16-21, 2006. Vancouver, BC, Canada, IEEE, 2006: 1162-1168.
[57] PENG X, WU S C, QIAN W J, et al. The potency of defects on fatigue of additively manufactured metals [J]. Int J Mech Sci, 2022, 221: 107185.
[58] KISHINO M, MATSUMOTO K, KOBAYASHI Y, et al. Fatigue life prediction of bending polymer films using random forest [J]. Int J Fatigue, 2023, 166: 107230.
[59] JIANG L F, HU Y N, LIU Y X, et al. Physics-informed machine learning for low-cycle fatigue life prediction of 316 stainless steels [J]. Int J Fatigue, 2024, 182: 108187.
[60] GAN L, WU H, ZHONG Z. Fatigue life prediction considering mean stress effect based on random forests and kernel extreme learning machine [J]. Int J Fatigue, 2022, 158: 106761.
[61] LI H, ZHANG J W, HU L K, et al. Notch fatigue life prediction of micro-shot peened 25CrMo4 alloy steel: A comparison between fracture mechanics and machine learning methods [J]. Eng Fract Mech, 2023, 277: 108992.
[62] ZHENG Z G, LI X X, SUN T, et al. Multiaxial fatigue life prediction of metals considering loading paths by image recognition and machine learning [J]. Eng Fail Analy, 2023, 143: 106851.
[63] HENG F, GAO J X, XU R X, et al. Multiaxial fatigue life prediction for various metallic materials based on the hybrid CNNLSTM neural network [J]. Fatigue Fract Eng Mat Struct, 2023, 46(5): 1979-1996.
[64] YANG J Y, KANG G Z, LIU Y J, et al. A novel method of multiaxial fatigue life prediction based on deep learning [J]. Int J Fatigue, 2021, 151: 106356.
[65] ZHANG X C, GONG J G, XUAN F Z. A deep learning based life prediction method for components under creep, fatigue and creep fatigue conditions [J]. Int J Fatigue, 2021, 148: 106236.
[66] GAN L, WU H, ZHONG Z. On the use of data-driven machine learning for remaining life estimation of metallic materials based on Ye-Wang damage theory [J]. Int J Fatigue, 2022, 156: 106666.
[67] TANG C Z, LI H W, LI K S, et al. Data-driven fatigue life prediction of small-deep holes in a nickel-based superalloy after a cold expansion process [J]. Int J Fatigue, 2024, 181: 108159.
[68] YANG H J, GAO J X, ZHU P N, et al. A machine learning method for HTLCF life prediction of titanium aluminum alloys with consideration of manufacturing processes [J]. Eng Fract Mech, 2023, 286: 109331.
[69] FENG C, SU M L, XU L Y, et al. Estimation of fatigue life of welded structures incorporating importance analysis of influence factors: A data-driven approach [J]. Eng Fract Mech, 2023, 281: 109103.
[70] ZOU L, YANG Y B, YANG X H, et al. Fatigue life prediction of welded joints based on improved support vector regression model under two-level loading [J]. Fatigue Fract Eng Mat Struct, 2023, 46(5): 1864-1880.
[71] TENG X Y, PANG J C, LIU F, et al. Fatigue life prediction of gray cast iron for cylinder head based on microstructure and machine learning [J]. Acta Metallurgica Sinica, 2023, 36: 1536-1548.
[72] GAN L, WU H, ZHONG Z. Integration of symbolic regression and domain knowledge for interpretable modeling of remaining fatigue life under multistep loading [J]. Int J Fatigue, 2022, 161: 106889.
[73] FENG C, SU M L, XU L Y, et al. A unified prediction approach of fatigue life suitable for diversified engineering materials [J]. Eng Fract Mech, 2023, 290: 109478.
[74] ZHOU S W, YANG B, XIAO S N, et al. Crack growth rate model derived from domain knowledge-guided symbolic regression [J]. Chinese Journal of Mechanical Engineering, 2023, 36(1): 40.
[75] LIAN Z H, LI M J, LU W C. Fatigue life prediction of aluminum alloy via knowledge-based machine learning [J]. Int J Fatigue, 2022, 157: 106716.
[76] ZHAN Z X, LI H. Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L [J]. Int J Fatigue, 2021, 142: 105941.
[77] ZHAN Z, HU W, MENG Q. Data-driven fatigue life prediction in additive manufactured titanium alloy: A damage mechanics based machine learning framework [J]. Eng Fract Mech, 2021, 252: 107850.
[78] 詹志新, 高同州, 刘传奇, 等. 基于数据驱动的增材制造铝合金的疲劳寿命预测[J]. 固体力学学报, 2023, 44(3): 381-394.
[79] ZHAN Z X, LI H. A novel approach based on the elastoplastic fatigue damage and machine learning models for life prediction of aerospace alloy parts fabricated by additive manufacturing [J]. Int J Fatigue, 2021, 145: 106089.
[80] GAN L, WU H, ZHONG Z. On the integration of domain knowledge and branching neural network for fatigue life prediction with small samples [J]. Int J Fatigue, 2023, 172: 107648.
[81] HANSEN C K, WHELAN G F, HOCHHALTER J D. Interpretable machine learning for microstructure-dependent models of fatigue indicator parameters [J]. Int J Fatigue, 2024, 178: 108019.
[82] GAO J X, HENG F, YUAN Y P, et al. A novel machine learning method for multiaxial fatigue life prediction: Improved adaptiveneuro-fuzzy in ference system [J]. Int J Fatigue, 2024, 178: 108007.
[83] WANG L Y, ZHU S P, LUO C Q, et al. Physics-guided machine learning frameworks for fatigue life prediction of AM materials [J]. Int J Fatigue, 2023, 172: 107658.
[84] WANG H J, LI B, XUAN F Z. Fatigue-life prediction of additively manufactured metals by continuous damage mechanics (CDM)-informed machine learning with sensitive features [J]. Int J Fatigue, 2022, 164: 107147.
[85] YUCESAN Y A, VIANA F A C. A physics-informed neural network for wind turbine main bearing fatigue [J]. Int J PrognHealth Manag, 2020, 11(1): 17.
[86] DOURADO A, VIANA F A C. Physics-informed neural networks for missing physics estimation in cumulative damage models: a case study in corrosion fatigue [J]. J Comput Inf Sci Eng, 2020,
20(6): 061007.
[87] VIANA F A C, NASCIMENTO R G, DOURADO A, et al. Estimating model inadequacy in ordinary differential equations with physics-informed neural networks [J]. Computer & Structures, 2021, 245: 106458.
[88] CHEN D, LI Y Z, LIU K, et al. A physics-informed neural network approach to fatigue life prediction using small quantity of samples [J]. Int J Fatigue, 2023, 166: 107270.
[89] CHEN J, LIU Y M. Probabilistic physics-guided machine learning for fatigue data analysis [J]. Expert Systems with Applications, 2021, 168: 114316.
[90] CHEN J, LIU Y M. Fatigue property prediction of additively manufactured Ti-6Al-4V using probabilistic physics-guided learning [J]. Additive Manufacturing, 2021, 39: 101876.
[91] 张明义, 袁帅, 钟敏, 等. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 材料导报, 2018, 32(5): 808-814.
[92] 赵丙峰, 廖鼎, 朱顺鹏, 等. 机械结构概率疲劳寿命预测研究进展[J]. 机械工程学报, 2021, 57(16): 173-184, 197.
[93] ACHARYA R, CAPUTO A N, NEU R W. Predicting creep-fatigue and thermomechanical fatigue life of Ni-base superalloys using a probabilistic physics-guided neural network [J]. Fatigue Fract Eng Mat Struct, 2023, 46(4): 1554-1571.
[94] ZHOU T G, SUN X Y, CHEN X. A physics-guided modelling method of artificial neural network for multiaxial fatigue life prediction under irregular loading [J]. Philosophical Transactions of the Royal Society A, 2023, 381(2260): 20220392.
[95] HALAMKA J, BARTOŠÁK M, ŠPANIEL M. Using hybrid physics-informed neural networks to predict lifetime under multiaxial fatigue loading [J]. Engineering Fracture Mechanics, 2023, 289: 109351.
[96] WANG L Y, ZHU S P, LUO C Q, et al. Defect driven physicsinformed neural network framework for fatigue life prediction of additively manufactured materials [J]. Philosophical Transactions of the Royal Society A, 2023, 381(2260): 20220386.
[97] SALVATI E, TOGNAN A, LAURENTI L, et al. A defect-based physics-informed machine learning framework for fatigue finite life prediction in additive manufacturing [J]. Materials & Design, 2022, 222: 111089.
[98] ZHOU T T, JIANG S, HAN T, et al. A physically consistent framework for fatigue life prediction using probabilistic physicsinformed neural network [J]. Int J Fatigue, 2023, 166: 107234.
[99] REN X D, LYU X R. Mixed form based physics-informed neural networks for performance evaluation of two-phase random materials [J]. Eng Appl Artif Intell, 2024, 127: 107250.
[100] HE G Y, ZHAO Y X, YAN C L. MFLP-PINN: A physics-informed neural network for multiaxial fatigue life prediction [J]. European Journal of Mechanics-A/Solids, 2023, 98: 104889.
[101] HE G Y, ZHAO Y X, YAN C L. Multiaxial fatigue life prediction using physics-informed neural networks with sensitive features [J]. Eng Fract Mech, 2023, 289: 109456.
[102] GAN L, WU H, ZHONG Z. Fatigue life prediction in presence of mean stresses using domain knowledge-integrated ensemble of extreme learning machines [J]. Fatigue Fract Eng Mat Struct, 2022, 45(9): 2748-2766.
[103] YANG J Y, KANG G Z, KAN Q H. Rate-dependent multiaxial life prediction for polyamide-6 considering ratchetting: Semi-empirical and physics-informed machine learning models [J]. Int J Fatigue,2022, 163: 107086.