[1] MILLER O L JR, HAMKALO B A, THOMAS C A JR. Visualization of bacterial genes in action [J]. Science, 1970, 169(3943): 392-395.
[2] DUTTA D, SHATALIN K, EPSHTEIN V, et al. Linking RNA polymerase backtracking to genome instability in E. coli [J]. Cell, 2011, 146(4): 533-543.
[3] STEVENSON-JONES F, WOODGATE J, CASTRO-ROA D, et al. Ribosome reactivates transcription by physically pushing RNA polymerase out of transcription arrest [J]. Proc Natl Acad Sci USA, 2020, 117(15): 8462-8467.
[4] ZHU M, MORI M, HWA T, et al. Disruption of transcription–translation coordination in Escherichia coli leads to premature transcriptional termination [J]. Nat Microbiol, 2019, 4(12): 2347-2356.
[5] IRASTORTZA-OLAZIREGI M, AMSTER-CHODER O. Coupled transcription-translation in prokaryotes: an old couple with new surprises [J]. Front Microbiol, 2021, 11. DOI: 10.3389/fmicb.2020.624830.
[6] LANDICK R, CAREY J, YANOFSKY C. Translation activates the paused transcription complex and restores transcription of the trp operon leader region [J]. Proc Natl Acad Sci USA, 1985, 82(14): 4663-4667.
[7] CHAN C L, LANDICK R. Dissection of the his leader pause site by base substitution reveals a multipartite signal that includes a pause RNA hairpin [J]. J Mol Biol, 1993, 233(1): 25-42.
[8] RICHARDSON J P. Rho-dependent termination and ATPases in transcript termination [J]. Biochim Biophys Acta, 2002, 1577(2): 251-260.
[9] EPSHTEIN V, DUTTA D, WADE J, et al. An allosteric mechanism of Rho-dependent transcription termination [J]. Nature, 2010, 463(7278): 245-249.
[10] SONG E, UHM H, MUNASINGHA P R, et al. Rho-dependent transcription termination proceeds via three routes [J]. Nat Commun, 2022, 13: 1663.
[11] MOLODTSOV V, WANG C, FIRLAR E, et al. Structural basis of Rho-dependent transcription termination [J]. Nature, 2023, 614(7947): 367-374.
[12] SAXENA S, MYKA K K, WASHBURN R, et al. Escherichia coli transcription factor NusG binds to 70S ribosomes [J]. Mol Microbiol, 2018, 108(5): 495-504.
[13] BURMANN B M, SCHWEIMER K, LUO X, et al. A NusE: NusG complex links transcription and translation [J]. Science, 2010, 328(5977): 501-504.
[14] ADHYA S, GOTTESMAN M. Control of transcription termination [J]. Annu Rev Biochem, 1978, 47: 967-996.
[15] KANG J Y, MISHANINA T V, BELLECOURT M J, et al. RNA polymerase accommodates a pause RNA hairpin by global conformational rearrangements that prolong pausing [J]. Mol Cell, 2018, 69(5): 802-815.e5.
[16] GUO X, MYASNIKOV A G, CHEN J, et al. Structural basis for NusA stabilized transcriptional pausing [J]. Mol Cell, 2018, 69(5): 816-827.e4.
[17] NUDLER E, MUSTAEV A, GOLDFARB A, et al. The RNADNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase [J]. Cell, 1997, 89(1): 33-41.
[18] KOMISSAROVA N, KASHLEV M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3´ end of the RNA intact and extruded [J]. Proc Natl Acad Sci USA, 1997, 94(5): 1755-1760.
[19] JU X, LI S, FROOM R, et al. Incomplete transcripts dominate the Mycobacterium tuberculosis transcriptome [J]. Nature, 2024, 627(8003): 424-430.
[20] PROSHKIN S, RAHMOUNI A R, MIRONOV A, et al. Cooperation between translating ribosomes and RNA polymerase in transcription elongation [J]. Science, 2010, 328(5977): 504-508.
[21] WEBSTER M W, WEIXLBAUMER A. Macromolecular assemblies supporting transcription-translation coupling [J]. Transcription, 2021, 12(4): 103-125.
[22] WEE L M, TONG A B, FLOREZ ARIZA A J, et al. A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery [J]. Cell, 2023, 186(6): 1244-1262. e34.
[23] JACQUET M, KEPES A. Initiation, elongation and inactivation of lac messenger RNA in Escherichiacoli studied by measurement of its β-galactosidase synthesizing capacity in vivo [J]. J Mol Biol, 1971, 60(3): 453-472.
[24] GOURSE R L, CHEN A Y, GOPALKRISHNAN S, et al. Transcriptional responses to ppGpp and DksA [J]. Annu Rev Microbiol, 2018, 72: 163-184.
[25] MOLODTSOV V, SINEVA E, ZHANG L, et al. Allosteric effector ppGpp potentiates the inhibition of transcript initiation by DksA [J]. Mol Cell, 2018, 69(5): 828-839.e5.
[26] SANCHEZ-VAZQUEZ P, DEWEY C N, KITTEN N, et al. Genome-wide effects on Escherichia coli transcription from ppGpp binding to its two sites on RNA polymerase [J]. Proc Natl Acad Sci USA, 2019, 116(17): 8310-8319.
[27] WANG B, ARTSIMOVITCH I. NusG, an ancient yet rapidly evolving transcription factor [J]. Front Microbiol, 2021, 11: 619618.
[28] SULLIVAN S L, WARD D F, GOTTESMAN M E. Effect of Escherichia coli NusG function on lambda N-mediated transcription antitermination [J]. J Bacteriol, 1992, 174(4): 1339-1344.
[29] MOONEY R A, SCHWEIMER K, RÖSCH P, et al. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators [J]. J Mol Biol, 2009, 391(2): 341-358.
[30] BURMANN B, KNAUER S, SEVOSTYANOVA A, et al. An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor [J]. Cell, 2012, 150(2): 291-303.
[31] MCGARY K, NUDLER E. RNA polymerase and the ribosome: the close relationship [J]. Curr Opin Microbiol, 2013, 16(2): 112-117.
[32] PAN T, ARTSIMOVITCH I, FANG X W, et al. Folding of a large ribozyme during transcription and the effect of the elongation factor NusA [J]. Proc Natl Acad Sci USA, 1999, 96(17): 9545-9550.
[33] STRAUß M, VITIELLO C, SCHWEIMER K, et al. Transcription is regulated by NusA: NusG interaction [J]. Nucleic Acids Res, 2016, 44(12): 5971-5982.
[34] MANDELL Z F, OSHIRO R T, YAKHNIN A V, et al. NusG is an intrinsic transcription termination factor that stimulates motility and coordinates gene expression with NusA [J]. eLife, 2021, 10: e61880.
[35] ARTSIMOVITCH I, LANDICK R. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals [J]. Proc Natl Acad Sci USA, 2000, 97(13): 7090-7095.
[36] MITRA P, GHOSH G, HAFEEZUNNISA M, et al. Rho protein: roles and mechanisms [J]. Annu Rev Microbiol, 2017, 71: 687-709.
[37] KRUPP F, SAID N, HUANG Y H, et al. Structural basis for the action of an all-purpose transcription anti-termination factor [J]. Mol Cell, 2019, 74(1): 143-157.e5.
[38] WANG C, MOLODTSOV V, FIRLAR E, et al. Structural basis of transcription-translation coupling [J]. Science, 2020, 369(6509): 1359-1365.
[39] KOHLER R, MOONEY R A, MILLS D J, et al. Architecture of a transcribing-translating expressome [J]. Science, 2017, 356(6334):
194-197.
[40] KANG J Y, MOONEY R A, NEDIALKOV Y, et al. Structural basis for transcript elongation control by NusG family universal regulators [J]. Cell, 2018, 173(7): 1650-1662.e14.
[41] MOLODTSOV V, WANG C, KAELBER J T, et al. Structural basis of RfaH-mediated transcription-translation coupling [J/OL]. [2024-03-11]. https://www.biorxiv.org/content/10.1101/2023.11.05.56572 6v1.full.pdf.
[42] ZUBER P K, ARTSIMOVITCH I, NANDYMAZUMDAR M, et al. The universally-conserved transcription factor RfaH is recruited to a hairpin structure of the non-template DNA strand [J]. eLife, 2018, 7: 36349.
[43] FAN H, CONN A B, WILLIAMS P B, et al. Transcription–translation coupling: direct interactions of RNA polymerase with ribosomes and ribosomal subunits [J]. Nucleic Acids Res, 2017, 45(19): 11043-11055.
[44] DEMO G, RASOULY A, VASILYEV N, et al. Structure of RNA polymerase bound to ribosomal 30S subunit [J]. eLife, 2017, 6: e28560.
[45] WEBSTER M W, TAKACS M, ZHU C, et al. Structural basis of transcription-translation coupling and collision in bacteria [J]. Science, 2020, 369(6509): 1355-1359.
[46] O´REILLY F J, XUE L, GRAZIADEI A, et al. In-cell architecture of an actively transcribing-translating expressome [J]. Science, 2020, 369(6503): 554-557.
[47] JOHNSON G E, LALANNE J B, PETERS M L, et al. Functionally uncoupled transcription-translation in Bacillus subtilis [J]. Nature, 2020, 585(7823): 124-128.
[48] XIONG H B, PAN H M, LONG Q Y, et al. AtNusG, a chloroplast nucleoid protein of bacterial origin linking chloroplast transcriptional and translational machineries, is required for proper chloroplast gene expression in Arabidopsis thaliana [J]. Nucleic Acids Res, 2022, 50(12): 6715-6734.