[1] AYVAZYAN V, BABOI N, BÄHR J, et al. First operation of a freeelectron laser generating GW power radiation at 32 nm wavelength [J]. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 2006, 37(2): 297-303.
[2] EMMA P, AKRE R, ARTHUR J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser [J]. Nature Photonics, 2010, 4(9): 641-647.
[3] HISHIKAWA A, FUSHITANI M, HIKOSAKA Y, et al. Enhanced nonlinear double excitation of He in intense extreme ultraviolet laser fields [J]. Physical Review Letters, 2011, 107(24): 243003.
[4] MA R, MOTOMURA K, ISHIKAWA K, et al. Photoelectron angular distributions for two-photon ionization of helium by ultrashort extreme ultraviolet free electron laser pulses [J]. Journal of Physics B: Atomic Molecular and Optical Physics, 2013, 46: 164018.
[5] ISHIKAWA K L, UEDA K. Competition of resonant and nonresonant paths in resonance-enhanced two-photon single ionization of He by an ultrashort extreme-ultraviolet pulse [J]. Physical Review Letters, 2012, 108(3): 033003.
[6] ŽITNIK M, MIHELIČ A, BUČAR K, et al. High resolution multiphoton spectroscopy by a tunable free-electron-laser light [J]. Physical Review Letters, 2014, 113(19): 193201.
[7] OTT C, AUFLEGER L, DING T, et al. Strong-field extremeultraviolet dressing of atomic double excitation [J]. Physical Review Letters, 2019, 123(16): 163201.
[8] STRAUB M, DING T, REBHOLZ M, et al. Differential measurement of electron ejection after two-photon two-electron excitation of helium [J]. Physical Review Letters, 2022, 129(18): 183204.
[9] RUDENKO A, FOUCAR L, KURKA M, et al. Recoil-ion momentum distributions for two-photon double ionization of He and Ne by 44 eV free-electron laser radiation [J]. Physical Review Letters, 2008, 101(7): 073003.
[10] JIANG Y H, RUDENKO A, KURKA M, et al. EUV-photon-induced multiple ionization and fragmentation dynamics: from atoms to molecules [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42(13): 134012.
[11] MOSHAMMER R, JIANG Y H, FOUCAR L, et al. Few-photon multiple ionization of Ne and Ar by strong free-electron-laser pulses [J]. Physical Review Letters, 2007, 98(20): 203001.
[12] DUNCANSON J A, STRAND M P, LINDGÅRD A, et al. Angular distributions of electrons from resonant two-photon ionization of sodium [J]. Physical Review Letters, 1976, 37(15): 987-990.
[13] HERGENHAHN U, SNELL G, DRESCHER M, et al. Dynamically induced spin polarization of resonant auger electrons [J]. Physical Review Letters, 1999, 82(25): 5020-5023.
[14] REID K L, LEAHY D J, ZARE R N. Complete description of molecular photoionization from circular dichroism of rotationally resolved photoelectron angular distributions [J]. Physical Review Letters, 1992, 68(24): 3527-3530.
[15] GILLASPY J D, POMEROY J M, PERRELLA A C, et al. The potential of highly charged ions: possible future applications [J]. Journal of Physics: Conference Series, 2007, 58(1): 451.
[16] GREENE C H, ZARE R N. Photofragment alignment and orientation [J]. Annual Review of Physical Chemistry, 1982, 33: 119-150.
[17] CARPEGGIANI P A, GRYZLOVA E V, REDUZZI M, et al. Complete reconstruction of bound and unbound electronic wavefunctions in two-photon double ionization [J]. Nature Physics, 2019, 15(2): 170-177.
[18] MAZZA T, ILCHEN M, KISELEV M D, et al. Mapping resonance structures in transient core-ionized atoms [J]. Physical Review X, 2020, 10(4): 041056.
[19] YOUNG L, KANTER E P, KRÄSSIG B, et al. Femtosecond electronic response of atoms to ultra-intense X-rays [J]. Nature, 2010, 466(7302): 56-61.
[20] FENG H, ZHANG Y, JIANG Y. Atomic and molecular experiments progress in free-electron laser field [J]. Laser & Optoelectronics Progress, 2016, 53(1): 010002.
[21] LAFORGE A C, SON S-K, MISHRA D, et al. Resonance-enhanced multiphoton ionization in the X-ray regime [J]. Physical Review Letters, 2021, 127(21): 213202.
[22] RUDEK B, SON S-K, FOUCAR L, et al. Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses [J]. Nature Photonics, 2012, 6(12): 858-865.
[23] HO P J, BOSTEDT C, SCHORB S, et al. Theoretical tracking of resonance-enhanced multiple ionization pathways in X-ray freeelectron laser pulses [J]. Physical Review Letters, 2014, 113(25): 253001.
[24] RÖRIG A, SON S-K, MAZZA T, et al. Multiple-core-hole resonance spectroscopy with ultraintense X-ray pulses [J]. Nature Communications, 2023, 14(1): 5738.
[25] JIANG Y H, RUDENKO A, KURKA M, et al. Few-photon multiple ionization of N2 by extreme ultraviolet free-electron laser radiation [J]. Physical Review Letters, 2009, 102(12): 123002.
[26] JIANG Y H, RUDENKO A, PÉREZ-TORRES J F, et al. Investigating two-photon double ionization of D2 by XUV-pump--XUV-probe experiments [J]. Physical Review A, 2010, 81(5): 051402.
[27] MEYER K, OTT C, RAITH P, et al. Noisy optical pulses enhance the temporal resolution of pump-probe spectroscopy [J]. Physical Review Letters, 2012, 108(9): 098302.
[28] JIANG Y H, RUDENKO A, PLÉSIAT E, et al. Tracing direct and sequential two-photon double ionization of D2 in femtosecond extreme-ultraviolet laser pulses [J]. Physical Review A, 2010, 81(2): 021401.
[29] VAGER Z, NAAMAN R, KANTER E P. Coulomb explosion imaging of small molecules [J]. Science, 1989, 244(4903): 426-431.
[30] PITZER M, KUNITSKI M, JOHNSON A S, et al. Direct determination of absolute molecular stereochemistry in gas phase by Coulomb explosion imaging [J]. Science, 2013, 341(6150): 1096-1100.
[31] JAHNKE T, GUILLEMIN R, INHESTER L, et al. Inner-shellionization-induced femtosecond structural dynamics of water molecules imaged at an X-ray free-electron laser [J]. Physical Review X, 2021, 11(4): 041044.
[32] BOLL R, SCHÄFER J M, RICHARD B, et al. X-ray multiphotoninduced Coulomb explosion images complex single molecules [J]. Nature Physics, 2022, 18(4): 423-428.
[33] KASTIRKE G, SCHÖFFLER M S, WELLER M, et al. Photoelectron diffraction imaging of a molecular breakup using an X-ray free-electron laser [J]. Physical Review X, 2020, 10(2): 021052.
[34] KASTIRKE G, SCHÖFFLER M S, WELLER M, et al. Double core-hole generation in O2 molecules using an X-ray free-electron laser: molecular-frame photoelectron angular distributions [J]. Physical Review Letters, 2020, 125(16): 163201.
[35] ZHANG Y Z, JIANG Y H. Imaging ultra-fast molecular dynamics in free electron laser field [M]//Advances of Atoms and Molecules in Strong Laser Fields. Singapore: World Scientific Publishing Co Pte Ltd, 2015: 205-235.
[36] JIANG Y H, PFEIFER T, RUDENKO A, et al. Temporal coherence effects in multiple ionization of N2 via XUV pump-probe autocorrelation [J]. Physical Review A, 2010, 82(4): 041403.
[37] SCHOENLEIN R W, PETEANU L A, MATHIES R A, et al. The first step in vision: femtosecond isomerization of rhodopsin [J]. Science, 1991, 254(5030): 412-415.
[38] OSIPOV T, COCKE C L, PRIOR M H, et al. Photoelectronphotoion momentum spectroscopy as a clock for chemical rearrangements: Isomerization of the dication of acetylene to the vinylidene configuration [J]. Physical Review Letters, 2003, 90(23): 233002.
[39] JIANG Y H, RUDENKO A, HERRWERTH O, et al. Ultrafast extreme ultraviolet induced isomerization of acetylene cations [J]. Physical Review Letters, 2010, 105(26): 263002.
[40] JIANG Y H, SENFTLEBEN A, KURKA M, et al. Ultrafast dynamics in acetylene clocked in a femtosecond XUV stopwatch [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46(16): 164027.
[41] LIEKHUS-SCHMALTZ C E, TENNEY I, OSIPOV T, et al. Ultrafast isomerization initiated by X-ray core ionization [J]. Nature Communications, 2015, 6(1): 8199.
[42] ARRUDA B C, SENSION R J. Ultrafast polyene dynamics: the ring opening of 1,3-cyclohexadiene derivatives [J]. Physical Chemistry
Chemical Physics, 2014, 16(10): 4439-4455.
[43] PATHAK S, IBELE L M, BOLL R, et al. Tracking the ultravioletinduced photochemistry of thiophenone during and after ultrafast ring opening [J]. Nature Chemistry, 2020, 12(9): 795-800.
[44] LEE J W L, TIKHONOV D S, CHOPRA P, et al. Time-resolved relaxation and fragmentation of polycyclic aromatic hydrocarbons investigated in the ultrafast XUV-IR regime [J]. Nature Communications, 2021, 12(1): 6107.
[45] MARCUS R A. Electron transfer reactions in chemistry. Theory and experiment [J]. Reviews of Modern Physics, 1993, 65(3): 599-610.
[46] SCHNORR K, SENFTLEBEN A, KURKA M, et al. Electron rearrangement dynamics in dissociating I2n+ molecules accessed by extreme ultraviolet pump-probe experiments [J]. Physical Review Letters, 2014, 113(7): 073001.
[47] NAGAYA K, MOTOMURA K, KUKK E, et al. Femtosecond charge and molecular dynamics of I-containing organic molecules induced by intense X-ray free-electron laser pulses [J]. Faraday Discussions, 2016, 194: 537-562.
[48] NAGAYA K, MOTOMURA K, KUKK E, et al. Ultrafast dynamics of a nucleobase analogue illuminated by a short intense X-ray free electron laser pulse [J]. Physical Review X, 2016, 6(2): 021035.
[49] ERK B, BOLL R, TRIPPEL S, et al. Imaging charge transfer in iodomethane upon X-ray photoabsorption [J]. Science, 2014, 345(6194): 288-291.
[50] MOTOMURA K, KUKK E, FUKUZAWA H, et al. Charge and nuclear dynamics induced by deep inner-shell multiphoton ionization of CH3I molecules by intense X-ray free-electron laser pulses [J]. The Journal of Physical Chemistry Letters, 2015, 6(15): 2944-2949.
[51] RUDENKO A, INHESTER L, HANASAKI K, et al. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays [J]. Nature, 2017, 546(7656): 129-132.
[52] ZHANG Y, YAN T-M, JIANG Y H. Ultrafast mapping of coherent dynamics and density matrix reconstruction in a terahertz-assisted laser field [J]. Physical Review Letters, 2018, 121(11): 113201.
[53] LI S, DRIVER T, ROSENBERGER P, et al. Attosecond coherent electron motion in Auger-Meitner decay [J]. Science, 2022, 375(6578): 285-290.
[54] CEDERBAUM L S, ZOBELEY J, TARANTELLI F. Giant intermolecular decay and fragmentation of clusters [J]. Physical Review Letters, 1997, 79(24): 4778-4781.
[55] MARBURGER S, KUGELER O, HERGENHAHN U, et al. Experimental evidence for interatomic Coulombic decay in Ne clusters [J]. Physical Review Letters, 2003, 90(20): 203401.
[56] JAHNKE T, HERGENHAHN U, WINTER B, et al. Interatomic and intermolecular Coulombic decay [J]. Chemical Reviews, 2020, 120(20): 11295-11369.
[57] KIMURA M, FUKUZAWA H, TACHIBANA T, et al. Controlling low-energy electron emission via resonant-Auger-induced interatomic Coulombic decay [J]. The Journal of Physical Chemistry Letters, 2013, 4(11): 1838-1842.
[58] SCHNORR K, SENFTLEBEN A, KURKA M, et al. Time-resolved measurement of interatomic Coulombic decay in Ne2 [J]. Physical Review Letters, 2013, 111(9): 093402.
[59] KULEFF A I, GOKHBERG K, KOPELKE S, et al. Ultrafast interatomic electronic decay in multiply excited clusters [J]. Physical Review Letters, 2010, 105(4): 043004.
[60] IABLONSKYI D, NAGAYA K, FUKUZAWA H, et al. Slow interatomic Coulombic decay of multiply excited neon clusters [J]. Physical Review Letters, 2016, 117(27): 276806.
[61] GARRETT B C, DIXON D A, CAMAIONI D M, et al. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances [J]. Chemical Reviews, 2005, 105(1): 355-390.
[62] LOH Z-H, DOUMY G, ARNOLD C, et al. Observation of the fastest chemical processes in the radiolysis of water [J]. Science, 2020, 367(6474): 179-182.
[63] LIN M-F, SINGH N, LIANG S, et al. Imaging the short-lived hydroxyl-hydronium pair in ionized liquid water [J]. Science, 2021, 374(6563): 92-95.
[64] SCHNORR K, BELINA M, AUGUSTIN S, et al. Direct tracking of ultrafast proton transfer in water dimers [J]. Science Advances, 2023, 9(28): eadg7864.